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Abstract
A national genetic evaluation called the New Zealand Genetic Evaluation (NZGE) is undertaken weekly to support the genetic 
improvement of sheep via selective breeding in New Zealand (NZ). This is based on single step genomic best linear unbiased 
predictions (ssGBLUP), which allows animals that have genotypes and pedigree, or just pedigree, to be included in the same 
analysis (or evaluation). In theory, an optimal strategy is that the density and quality of SNPs used should be high enough to 
track all the haplotypes segregating in the population to be evaluated. Since genomic predictions have been used in NZ sheep, the 
content of the SNP panel used has decreased to a panel of 41K; despite that there are new SNP panels with more content available.. 
The effect of using this additional content and additional SNPs from an Ovine 600K chip was investigated using the trait fleece 
weight at 12-months.  We found that a high density panel provided  more accurate predictions. However, a SNP panel based on the 
50K SNPs plus a relatively small subset of additional SNPs (e.g. from the 600K Chip), were as predictive as using the high density 
panel. We conclude that increased SNP density, beyond the 41K selected from the Ovine 50K SNP, chip will improve prediction 
accuracy. Our results suggest that the inclusion of SNPs from putative quantitative trait loci (QTL) may also improve prediction 
accuracy. However, further analyses will be helpful to distinguish the relative benefit to accuracy of increased SNP density across 
the genome and/or inclusion of SNPs associated with QTL. 
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Introduction
The process of genetic evaluation aims to take data 

(e.g. pedigree, phenotypes and fixed effects) to predicts 
breeding values. More-often the statistical method best 
linear unbiased prediction (BLUP) (Henderson et al. 
1959; Henderson 1975) is used. In BLUP (Equation 1), 
the breeding values (u) are predicted from the information 
from phenotypes (y), fixed effects (b) and relationships 
between individuals, where X and Z are design matrices 
and e residual errors, assumed independent of the random 
effects, with variance proportion to I (identity matrix) and 
the variance of u is proportional to the animal relationship 
matrix. 

Equation 1 BLUP
y = Xb + Zu + e

In genomic BLUP (GBLUP) the genotypes are used 
to create a genomic relationship matrix (GRM) in contrast 
to a pedigree relationship matrix (or numerator relationship 
matrix; NRM) for standard pedigree BLUP.  In single step 
GBLUP (ssGBLUP) the NRM and GRM are combined 
to give matrix H that is used in the BLUP mixed model 
equations described by Henderson (Henderson 1975) to 
predict breeding values.

It is the inverse of the relationship matrices that are 
used in the mixed model equations (MME). For example, 
for ssGBLUP (Legarra et al. 2009), the inverse of H (H-1) 
is used in the MME  (Equation 2) to obtain solutions for 
fixed effects ( b̂ ) and random effects or breeding values
( û ), where λ is the ratio of the variance of residual additive 

effects over the variance of additive genetic effects. This 
implies that these parameters are known.

Equation 2 Mixed model equation described by Henderson

Currently, NZGE for maternal breeds (i.e. Romney, 
Coopworth, Perendale and Composites of these breeds)  
uses single nucleotide polymorphisms (SNPs) based on 
the Illumina Ovine 50K SNP chip (Anonymous 2015). In 
practice, most animals are genotyped using a lower density 
chip and imputed up to 50K. The density of these lower 
density chips has increased with time from about 5,000 
SNPs to 18,000 SNPs. Many of these additional SNPs 
are not on the 50K SNP chip, but are present on a higher 
density 600K chip. 

Information from data such as whole-genome 
sequence (WGS) is increasingly being applied into 
genomic predictions, offering a potential for increased 
prediction accuracy by including causal mutations or 
single-nucleotide polymorphisms (SNPs) in strong linkage 
disequilibrium (LD) with causal mutations affecting the 
trait of interest. Research to include information from WGS 
into genomic predictions to increase prediction accuracy 
is a focus in many species. The hypothesis is that causal 
mutations or SNPs in strong linkage disequilibrium with 
causal mutations affecting the trait may increase prediction 
accuracy, particularly across breeds. It is impractical to use 
all markers available for routine NZGE; therefore a subset 
of those available is sought. The selection of an “ideal” 
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marker set is a challenging task. The longer term aim of this 
study was to understand the effect of using SNPs additional 
to those used routinely in NZGE and in particular those 
associated with quantitative trait loci (QTL). The longer 
term goal is to use this information to improve predictions 
and hence the profitability in farming. Here we report some 
initial results for the trait wool fleece weight at 12-months 
of age (FW12). Future work will investigate and contrast 
other traits with higher marker densities. 

Materials and methods
Data

This study used historic data collected by NZ sheep 
farmers and researchers and prior information (e.g. models 
and parameters) provided by Beef+Lamb New Zealand 
Genetics (B+LNZG). The number of pedigreed animals in 
the evaluation was 10,751,607. 

Genotype data from 6,706 animals that had both 
phenotype and/or progeny with phenotypes (FW12) were 
included in the evaluation. The number of animals available 
were low as there were much lower numbers of animals 
with 600K SNP panel data compared to 50K data.  This 
genotype data included terminal sire breeds, which were 
sheep breed to produce lambs for meat (e.g. Sufolks, Texels 
and Sufteexs) and maternal sire breeds from which ewe 
replacements are taken from (e.g. sheep of breed Romney, 
Coopworth, Perendale or composites of these breeds). The 
SNP panels used and treatments are described in Table 
1. The genotypes were from an Ovine 600K SNP chip 
(n=2,243) or imputed from lower density chips (n=4,463) 
using a reference panel from B+LNZG and using the 
software FImpute2 (Sargolzaei et al. 2014) or Beagle 5.0 
(Browning et al. 2018). The mean accuracy of the imputed 
animals was 0.99 calculated as an allelic concordance. The 
accuracy of imputation for each animal was estimated by 
validation, where markers were removed from the animals 
genotyped and after imputation the removed markers 
compared to those imputed.

In a previous study using genotype data from 131,916 
animals each with 13,209 SNPs we undertook a GWAS 
across 40 traits in NZ sheep, with sample sizes ranging from 
1,316 to 105,248 animals - only 24 traits had significant 
QTL (data not shown). The goal of this GWAS was to 
use non-imputed SNPs to identify large QTL segregating 
in the population. We used the results from this study and 
data assembled from a number of more recent ovine SNP 
chips to investigate the effect of increased SNP content on 
prediction accuracy compared to a SNP chip based solely 
on the initial Ovine 50K chip.

The results for the SNP panels of 41K and 46K all 
used 5% of NRM and 95% GRM. The 41K panel is derived 
from the 50K Ovine SNP chip and the 46K panel is the 41K 
panel with the additional SNPs from the HD SNP Chip that 
are also on the more recent SNPs of density >15K used in 
NZ. The panel 41KKMM (Table 2) is the 46K panel with 
5,292 SNPs of the most significant SNPs from the GWAS 
described above removed. These SNPs are putatively 

associated with QTL for FW12. The panel 45KMF is based 
on the 46K panel; except that the significant SNPs (Figure 
1) and those flanking these SNPs within a genetic distance 
of 2,500,000 base pairs were removed. Consequently, 
188, 210 and 185 SNPs were removed, respectively, on 
chromosomes 1, 3 and 8 (see Figure 1).

Computing and Software
Breeding values were predicted with BLUP and 

ssGBLUP by using preconditioned conjugate gradient in 
Mix99  (Strandén and Lidauer 1999). Other data handling 
used Linux shell commands or R (The_R_Development_
Core_Team 2011) built with the Intel® Math Kernel Library.

Assessing Prediction accuracy of genomic prediction
The accuracy of evaluations was assessed by validation 

with 185 recent sires that had a mean (standard deviation)  
number of progeny with phenotypes of 36.26 (24). The 
year of birth of these sires ranged from 2014 to 2017. In 
the reduced dataset all of the phenotypes from the sires and 
their descendants were removed (i.e. un-recorded). The 
number of FW12 phenotypes in the full and reduced data set 
was, respectively, 2,022,154 and 1,946,506. The accuracy 
using the reduced data was compared as the correlation 
between the deregressed breeding values with the parent 
average removed (Garrick et al. 2009) calculated from a 
BLUP that included all of the data. A higher correlation 
for a given prediction with the reduced dataset  implies a 
higher accuracy of prediction. 

The percentage of NRM relative to the GRM used 
to calculate the H ranged from 5-75% for ssGBLUP 
evaluations with the highest density SNP panel (n=564,998) 
. Equation 3 and Equation 4 explain how this weighting is 
done, where the weighted GRM (Gw) is calculated from the 
GRM (G) and the NRM (A) depending on α (proportion of 
the NRM to be used). 

Equation 3 Weighted G matrix
Gw = (1– a)G + aA 

Equation 4 The H-inverse matrix used in the mixed model 
equations for ssGBLUP

A description of the treatments investigated is given 
in Table 1. The model used for BLUP and ssGBLUP 
was identical except for the inverse of the covariance 
matrix (NRM versus H). The model and assumed genetic 
parameters used were proprietary to B+LNZG. 

Results
A plot of the results from the genome wide association 

study (GWAS), described in materials and methods, based 
on 26,024 animals is given in Figure 1 for the trait FW12. 
There were three putative QTL regions that met a threshold 
of 0.05 divided by the product of the number of traits by the 
number of markers.  

H-1 = A-1 +
0          0
0  G w  
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The validation results as correlations from comparing 
different treatments (see Table 1) are given in Table 2 for 
the full validation set and for the validation set split by 
breed type. 

Discussion
Previous GWAS undertaken suggested for most current 

economically important traits there is not an abundance 
of large QTL, such as the myostatin mutation that affects 
muscling in sheep (Clop et al. 2006),  segregating in the NZ 
sheep population (data not shown). This is relevant because 
an ongoing goal of research is to improve prediction 
accuracy by better using all data that is available. This 
might include WGS, prior knowledge on causal mutations 
etc. 

Unsurprisingly, we found that a higher density panel 
gives more accurate prediction than a lower density 
(treatment ss0.05 was at least as good as any other method 
with 0.05 NRM weighting). The best correlation, 0.31, for 
maternal animals was seen using an α-value of 0.05  for the 
high density panel, whereas, for the lower density 41K chip 
based on the 50K Ovine SNP chip the correlation was 0.29. 
This was also shown in dairy cattle when the reliability of 
genomic breeding value was 0.5% and 1.0% higher using a 
777K SNP chip compared to a 54K SNP chip respectively 
in Holstein and Red Dairy cattle (Su et al. 2012). The use of 
whole genome sequence for predictions, however, showed 
only a small increase in accuracy (1%) over a 60K panel 
in chickens (Heidaritabar et al. 2016).  Practical and/or 
economic considerations would probably preclude the use 

Table 1 Treatments and SNP panels used in this study. The treatments used for the different evaluations were: BLUP, 
pedigree only; ss0.75, ssGBLUP with a GRM calculated from 564,998 SNPs; ss0.5, ssGBLUP with a GRM calculated from 
564,998 SNPs; ss0.25, ssGBLUP with a GRM calculated from 564,998 SNPs; ss0.05, ssGBLUP with a GRM calculated 
from 564,998 SNPs; ss0.05_41K, ssGBLUP with a GRM calculated from 40,881 SNPs; ss0.05_46K, ssGBLUP with a GRM 
calculated from 46,173 SNPs that consisted the same SNPs from the 41K panel and additional SNPs from the 564,998 panel; 
ss0.05_41KMM, 5,292 SNPs removed from the 46K panel that were the most significant SNPs from GWAS; ss0.05_45MF, 
the SNPs removed from the 46K panel that flanked three putative QTL detected by GWAS. 
Treatment SNP panel Comment
BLUP Non applicable uses just pedigree
ss0.75 564998 SNPs from 600K SNP chip H-matrix uses 75% A, 25% G
ss0.5 H-matrix uses 50% A, 50% G
ss0.25 H-matrix uses 25% A, 75% G
ss0.05 H-matrix uses 5% A, 95% G
ss0.05_41K 40,881 SNPs from 50K Chip H-matrix uses 5% A, 95% G
ss0.05_46K 46,173 SNPs updated from HD and 50K H-matrix uses 5% A, 95% G
ss0.05_41KMM removed 5,292 GWAS SNPs from the 46,173 panel giving 40,881 SNPs H-matrix uses 5% A, 95% G
ss0.05_45KMF removed SNPs flanking 3 putative QTL H-matrix uses 5% A, 95% G

Figure 1 Manhattan plot of GWAS results for the trait FW12. The horizontal line is a Bonferroni significance threshold of 
0.05. 
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because an ongoing goal of research is to improve prediction accuracy by better using all data 157 

that is available. This might include WGS, prior knowledge on causal mutations etc.  158 

Unsurprisingly, we found that a higher density panel gives more accurate prediction than a 159 

lower density (treatment ss0.05 was at least as good as any other method with 0.05 NRM 160 

weighting). The best correlation, 0.31, for maternal animals was seen using an α-value of 161 

0.05  for the high density panel, whereas, for the lower density 41K chip based on the 50K 162 

Ovine SNP chip the correlation was 0.29. This was also shown in dairy cattle when the 163 

Table 2 Validation results comparing different SNP panels and BLUP. Maternal Animals consisted of animals of breed 
Romney, Coopworth, Perendale and composites of these and Terminal Animals consisted of those of mainly Suffolk, Texel 
and composites of these. The Combined group included animals from both Maternal and Terminal breeds. See Table 1 for 
abbreviations.
Group n BLUP ss0.75 ss0.5 ss0.25 ss0.05 ss0.05_41K ss0.05_46K ss0.05_41KMM ss0.05_45KMF
Maternal Animals   96 0.23 0.27 0.28 0.3 0.31 0.29 0.31 0.29 0.3
Terminal Animals   89 0.56 0.57 0.56 0.55   0.5   0.5 0.5 0.49 0.5
Combined 185 0.56 0.57 0.58 0.57 0.55 0.54 0.54 0.53 0.54
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of such high marker density in routine genetic evaluation.
Prediction accuracy in diverse sheep populations 

increased when using variants selected from WGS data 
compared to standard 50K genotypes using GBLUP and 
Bayesian methods (Moghaddar et al. 2019). In the context 
of ssGBLUP the inclusion of additional SNPs, associated 
with QTL, from sequencing data could improve the 
accuracy for some, but not all, milk traits (Liu et al. 2020).  
They concluded that two more sophisticated ssGBLUP 
methods (e.g. weighted ssGBLUP) offered no significant 
advantage over standard ssGBLUP. In French dairy goats, 
weighted ssGBLUP was between 2 and 14% more accurate 
when a QTL was known to be segregating in the population, 
but otherwise less accurate or as accurate as, standard 
ssGBLUP (Teissier et al. 2019).  In the context of NZGE, it 
would be difficult to implement weighted ssGBLUP, given 
the complexity of the population to be evaluated. Instead, 
the incorporation of markers associated with QTL may 
provide a better strategy for this population.  

In relation to this we expected that the removal 
of the SNPs detected by GWAS would decrease 
prediction accuracy. In a comparison of ss0.05_41K with 
ss0.05_41KMM there was no difference for maternal 
animals and a modest (1%) decrease for terminal animals, 
when comparing the terminal animals with an α-value of 
0.05.  There was a 1% decrease in correlation between 
ss0.05_46K and ss0.05_45KMF for the maternal animals. 
This result is consistent with our expectation, but further 
analyses will need to be done to substantiate them. 

In NZGE genotypes from maternal animals are 
evaluated separately of those from terminal animals. In 
this study, we combined the genotypes into one evaluation 
and analysed the results as correlations across and within 
these two groups. The results highlight that for ssGBLUP 
by combining animals from disparate breeds a trade-off 
needs to be made to optimally predict across all breeds. For 
example, the optimal percentage of the NRM to include 
in making H was 0.05 for maternal animals (see Table 
2), whereas, for terminal animals this percentage (α in 
Equation 3) the correlation was worse than using BLUP 
(i.e. pedigree only). Using a higher percentage of NRM 
(less GRM) would be necessary to provide predictions 
for both the maternal and terminal animals that are more 
accurate than BLUP. 

The inclusion of SNPs from GWAS was indicative 
of improving prediction accuracy and warrants further 
investigation (e.g. investigation across other traits). We 
were restricted by low sample size in this study as the 
number of progeny tested sires that had 600K genotypes 
was low. This meant that it was hard to interpret bias, where 
this is commonly analysed by comparing the slope from 
regressing the deregressed breeding value on the breeding 
value predicted, from the results so these results were 
omitted from this study. However, the results suggested 
that increased density might also decrease bias (data not 
shown).  

We conclude that for the population and trait being 
evaluated the use of an increased SNP density, beyond the 
41K selected from the Ovine 50K SNP chip, will improve 
prediction accuracy and that further investigation into 
including QTL effects into evaluations is warranted.

Acknowledgements
The authors gratefully acknowledge Beef + Lamb 

New Zealand Genetics, Levy paying farmers and Sheep 
breeders for contributing to this work. The research was 
also, in part, funded by Genomics Aotearoa. 

References
Anonymous 2015. OvineSNP50 Genotyping BeadChip, In: 

Data Sheet: Agrigenomics.
Browning BL, Zhou Y, Browning SR 2018. A One-Penny 

Imputed Genome from Next-Generation Reference 
Panels. The American Journal of Human Genetics 
103: 338-348.

Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe 
B, Bouix J, Caiment F, Elsen JM, Eychenne F, 
Larzul C, Laville E, Meish F, Milenkovic D, Tobin 
J, Charlier C, Georges M 2006. A mutation creating 
a potential illegitimate microRNA target site in the 
myostatin gene affects muscularity in sheep. Nature 
Genetics 38: 813-818.

Garrick DJ, Taylor JF, Fernando RL, 2009. Deregressing 
estimated breeding values and weighting information 
for genomic regression analyses. Genetics Selection 
Evolution 41: 55.

Heidaritabar M, Calus MP, Megens HJ, Vereijken A, 
Groenen MA, Bastiaansen JW 2016. Accuracy of 
genomic prediction using imputed whole-genome 
sequence data in white layers. Journal of Animal 
Breeding and Genetics 133: 167-179.

Henderson CR 1975. Best linear unbiased estimation and 
prediction under a selection model. Biometrics 31: 
423-447.

Henderson CR, Kempthorne O, Searle SR, von Krosigk 
CM, 1959. The estimation of environmental and 
genetic trends from records subject to culling. 
Biometrics 15: 192-218.

Legarra A, Aguilar I, Misztal I 2009. A relationship matrix 
including full pedigree and genomic information. 
Journal of Dairy Science 92: 4656-4663.

Liu A, Lund MS, Boichard D, Karaman E, Guldbrandtsen B, 
Fritz S, Aamand GP, Nielsen US, Sahana G, Wang Y, 
Su G 2020. Weighted single-step genomic best linear 
unbiased prediction integrating variants selected from 
sequencing data by association and bioinformatics 
analyses. Genetics Selection Evolution 52: 48.

Moghaddar N, Khansefid M, van der Werf JHJ, Bolormaa 
S, Duijvesteijn N, Clark SA, Swan AA, Daetwyler 
HD, MacLeod IM 2019. Genomic prediction based 
on selected variants from imputed whole-genome 
sequence data in Australian sheep populations. 
Genetics Selection Evolution 51: 72.



New Zealand Journal of Animal Science and Production 2021. Vol 81: 117-121	 121

Sargolzaei M, Chesnais JP, Schenkel FS 2014. A new 
approach for efficient genotype imputation using 
information from relatives. BMC genomics 15: 478-
478.

Strandén I, Lidauer M 1999. Solving large mixed linear 
models using preconditioned conjugate gradient 
iteration. Journal of Dairy Science 82: 2779-2787.

Su G, Brøndum RF, Ma P, Guldbrandtsen B, Aamand GP, 
Lund MS 2012. Comparison of genomic predictions 
using medium-density (∼54,000) and high-density 
(∼777,000) single nucleotide polymorphism marker 
panels in Nordic Holstein and Red Dairy Cattle 
populations. Journal of Dairy Science 95: 4657-
4665.

Teissier M, Larroque H, Robert-Granie C, 2019. Accuracy 
of genomic evaluation with weighted single-step 
genomic best linear unbiased prediction for milk 
production traits, udder type traits, and somatic 
cell scores in French dairy goats. Journal of Dairy 
Science 102: 3142-3154.

The R Development Core Team 2011. R: A language and 
environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria.


