New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Share— copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Although stock numbers increased rapidly in the first 5 years of
the Morven-Glenavy irrigation scheme, their performance was
disappointing. This was related to the many interacting factors
of stock and pasture management brought about by the introduc-
tion of irrigation.

The locality and the development programmes have been de-
scribed by McKnight et al. (1978), who also discuss specific
stock health problems.

In planning for irrigation a farmer must understand the en-
gineering aspects and the consequent changes in fencing, drainage
access, shelter and building layout. He also needs specialized
information on the management of stock and pasture under irri-
gation and how these differ from those of dryland farming.

Up to 35 man-hours per hectare are needed for physical de-
velopment, and unless extra labour is employed or routine work
delegated, the essential aspects of stock and pasture management
can be neglected. One of the most important of these is subdivi-
sion for grazing control, and this is often delayed by lack of
labour and finance.

As stock policies change from annual ewe purchase to replace-
ment breeding, knowledge of hogget rearing and the rotational
grazing of young stock becomes important. Good two-tooth de-
velopment leads to good lambing performance, and this demands
adequate pasture and the control of internal parasites. It is here
that management deficiencies were most evident as the massive
input for physical development occupied the farmers' attention.

Specific health problems arose, lamb ill-thrift occurring from
1974-5. The region has had a history of cobalt deficiency in
stock, and pasture levels of Cu, Zn, P and S have at times been
low, although it has been difficult to correlate pasture mineral
levels with lamb growth. Internal parasites, particularly Nema-
todirus and Ostertagia, became a major problem with pathogenic
burdens re-establishing within 21 days of anthelmintic treatment.
These difficulties have been attacked on a multi-disciplinary basis in which veterinarians and extension officers have worked with farmers towards a solution. Improved stock performance has come with a rational programming of development in which stock and pasture factors have been given more prominence and have moved in step with the engineering aspects of the scheme. Cobalt deficiencies have been corrected. Both liveweight gains and lambing percentages have improved.

REFERENCE