New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

- **Share** — copy and redistribute the material in any medium or format

Under the following terms:

- **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** — You may not use the material for commercial purposes.
- **NoDerivatives** — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org/licenses/by-nc-nd/4.0/
Conjugated linoleic acid (CLA) is a collective term for the range of conjugated isomers of linoleic acid (C18:2n-6). These fatty acids occur naturally in milkfat and have proven anticarcinogenic properties in laboratory rodents (Ip et al., 1999). Additionally, the various isomers have other reputed benefits for human health such as enhanced bone mineralisation, antidiabetic effects, reduced atherosclerosis and immune system modulation (Whigham et al., 2000). Such potential benefits for human health have focussed international research on enhancing concentrations of CLA in milk and dairy products.

Overseas data show that one way to increase the concentrations of CLA in milk is to change the diet of cows from a typical total mixed ration (TMR) to pasture (Kelly et al., 1998; White et al., 2001). This points to a potential competitive advantage for the New Zealand dairy industry, in which pasture is already almost the sole source of feed. Despite this there are no data confirming the beneficial effects of pasture for enhancing CLA under New Zealand grazing conditions.

The experiment described here used an existing experiment to compare the concentrations of CLA in milk from cows fed TMR or grazing pasture for an entire lactation under New Zealand conditions. A group of Holstein-Friesian cows, all in their second lactation, was divided randomly into two groups of 20. One group grazed a generous pasture allowance. The other group was fed a TMR formulated from silage and concentrates, and was contained within an outdoor feed pad. The TMR was formulated according to the nutritional requirements of the cows, and nutritional treatments were imposed for an entire lactation. At the time of the experiment the same nutritional regimens had been in place for the preceding lactation as well. Further details of experimental conditions are provided by Kolver (2001).

Milk was sampled from each cow at six consecutive milkings on five occasions during the year (September, December, February, March and April). On each sampling occasion, the milk samples from the six milkings (i.e. three days) were bulked to form one sample per cow, and the fatty acid profiles of milk, including CLA, were analysed using gas chromatography techniques (MacGibbon, 1988).

Concentrations of CLA (mg/g fatty acids) in the milkfat of grazing and TMR-fed cows are presented in Figure 1. CLA concentrations of milk from grazing cows were nearly always higher than for cows fed TMR. The exception was in March (late summer) when there was no difference between the CLA concentrations in milk from cows on the two treatment groups. Differences in CLA between TMR-fed and grazing cows were greatest during the early part of the dairying season (September – February). Concentrations of CLA in milk from grazing cows declined as lactation progressed, but increased slightly for TMR-fed cows. Overall, the mean concentrations of total CLA for pasture-fed and TMR-fed cows in the current study (12.2 c.f. 8.0 mg/g fatty acids respectively) appeared slightly greater than values reported in the U.S.A. of 10.9 and 4.6 mg/g of milkfat (Kelly et al., 1998).

In the current study, the milk from the grazing cows showed an initial increase in CLA concentrations in February and March, which was not observed in the TMR-fed cows. This pattern of change in CLA concentrations across lactation may be due to changes in the quality and availability of pasture. These factors may have altered the intake of total pasture lipid and, in particular, linolenic acid. This explanation is consistent with research (N.A. Thomson, unpublished data) showing that in the year the current experiment was conducted, concentrations of total lipid and proportions of linolenic acid in Waikato pasture were low in autumn (March) and high in spring (September). Although it was initially thought that most CLA was derived directly from the ruminal biohydrogenation of linoleic acid, it is now recognised that the majority arises from the desaturation in the mammary gland of trans-vaccenic acid (trans-11 C18:1), another intermediate in the biohydrogenation pathway of polyunsaturated fatty acids (Griinari et al., 2000). Recently a study in New Zealand confirmed the importance of such endogenous synthesis of CLA in grazing cows (J.K. Kay, unpublished data). Thus this could explain the higher concentrations of CLA in cows grazing pasture, since the high levels of linolenic acid in pasture compared to TMR would provide an increased source of trans-11 C18:1 for desaturation.

FIGURE 1. Concentrations of conjugated linoleic acid (CLA) throughout lactation in milk from cows grazing pasture (●) and cows fed a typical total mixed ration (◆) for an entire lactation. Vertical brackets indicate standard errors of the differences. Asterisks indicate the significance of differences at each sampling point.

This pattern of change in CLA concentrations across lactation may be due to changes in the quality and availability of pasture. These factors may have altered the intake of total pasture lipid and, in particular, linolenic acid. This explanation is consistent with research (N.A. Thomson, unpublished data) showing that in the year the current experiment was conducted, concentrations of total lipid and proportions of linolenic acid in Waikato pasture were low in autumn (March) and high in spring (September). Although it was initially thought that most CLA was derived directly from the ruminal biohydrogenation of linoleic acid, it is now recognised that the majority arises from the desaturation in the mammary gland of trans-vaccenic acid (trans-11 C18:1), another intermediate in the biohydrogenation pathway of polyunsaturated fatty acids (Griinari et al., 2000). Recently a study in New Zealand confirmed the importance of such endogenous synthesis of CLA in grazing cows (J.K. Kay, unpublished data). Thus this could explain the higher concentrations of CLA in cows grazing pasture, since the high levels of linolenic acid in pasture compared to TMR would provide an increased source of trans-11 C18:1 for desaturation.
These data provide the first controlled confirmation under New Zealand conditions that pasture provides a more effective supply of substrate for the production of CLA in milkfat than a forage/concentrate TMR. Future research will determine whether CLA concentrations of grazing cows can be increased even higher, perhaps by providing an even greater supply of trans-11 C\textsubscript{18:1}, so as to maximise the benefits in terms of both consumer perception and human health.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of B. Sugar and No. 1 Dairy staff for animal care and husbandry, B. Dow for statistical analyses of data, and A. Chand for chemical analyses of milk fatty acid profiles.

REFERENCES

