New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

- Share— copy and redistribute the material in any medium or format

Under the following terms:

- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Increased hepatic skatole exposure via rumen infusion increases skatole concentration in peripheral circulation and inter-muscular fat in sheep

M.H. DEIGHTON¹², D. PACHECO¹, M.H. TAVENDALE¹, N.M. SCHREURS¹³, J.S. PETERS¹, W.C. MCNABB¹ AND N.C. ROY¹

¹Food, Metabolism & Microbiology Section, Food & Health Group, AgResearch Limited, Grasslands Research Centre, Private Bag 11008, Palmerston North, New Zealand

ABSTRACT

Skatole meat taint is unique to pastoral systems where high forage digestibility results in tryptophan-derived skatole production at rates that exceed the clearance capacity of the liver. We hypothesise that under conditions of minimal endogenous skatole production (diet low in rumen degradable protein) a continuous rumen infusion of skatole will elevate hepatic exposure and modify tissue skatole metabolism. A 72 hour rumen infusion of skatole (140 mg/h; n = 6) dissolved in propane-1,2-diol (PD) or PD media alone (n = 6) was performed. Samples of rumen fluid and blood were collected at 0, 2, 4, 6, 8, 12, 16, 24, 48 and 72 hours for determination of skatole concentration. Infusion of skatole increased (P < 0.01) levels of skatole in rumen fluid (21 µg/g), peripheral plasma (154 ng/ml) and inter-muscular fat (4240 ng/g). A two-compartment model was fitted to the rumen and plasma skatole concentration of treated sheep to estimate the rate of transfer from rumen to peripheral plasma ($k = 0.23 ± 0.03$/h) and the rate of elimination from peripheral circulation ($k = 2.10 ± 0.56$/h). A negative correlation (P < 0.05) between the rate of elimination and level of skatole deposition in inter-muscular fat was also found.

Keywords: skatole; rumen; hepatic, metabolism.

INTRODUCTION

Undesirable meat flavours arise from ruminant production systems utilising pastures with high rumen degradable protein (RDP) content. These flavours constrain sheep meat marketability and returns, especially in Asian and European markets (Prescott et al., 2001). The volatile indolic compound skatole, produced in the rumen (Carlson et al., 1968), contributes to these undesirable meat flavours (Priolo et al., 2001; Young et al., 2003). Strategies to reduce skatole deposition in meat must also reduce its appearance in peripheral circulation as skatole is rapidly deposited in body fat (Whittington et al., 2004).

The major route of skatole disappearance from the rumen is via absorption into the portal blood (Hammond et al., 1983; Roy et al., 2004) with almost all absorption from the liquid phase occurring prior to the duodenum (Hammond et al., 1984). Skatole in the portal blood flows to the liver where its metabolism could potentially modify the concentration of skatole appearing in the peripheral circulation, thus affecting the deposition of skatole in body fat (Zamaratskaia et al., 2006).

The present study was undertaken as part of a larger programme that aims to discover genes involved in the metabolism of skatole in the ovine liver. It is hypothesised that a 72 hour administration of exogenous skatole in the rumen will modify hepatic skatole metabolism in sheep. The objective of this experiment was to collect hepatic tissue suitable for micro-array experimentation following this contrasting skatole exposure. Additionally the administration of exogenous skatole has enabled the modelling of skatole flux and provided an insight into the variation in skatole metabolism between individual sheep.

MATERIALS AND METHODS

Animals, surgery and feeding

Twelve castrate Suffolk x Romney sheep of 10 months of age and from a single sire were selected following screening for normal liver function using clinical laboratory tests of gamma-glutamyl transferase, glutamate dehydrogenase, total protein, albumin and globulin (NZ Veterinary Pathology). All sheep were surgically fitted with permanent rumen cannula under general anaesthesia. After surgery, the animals grazed a perennial ryegrass-white clover pasture for two months prior to the commencement of the experiment. In order to minimise endogenous skatole production a concentrate diet with low RDP content (13.4 MJ/kg ME; 130 g/kg DM CP; 40 g/kg DM estimated RDP) was designed to replicate the skatole reducing effect of maize feeding shown by Young et al. (2003). Animals were adjusted to

¹Institute of Food, Nutrition and Human Health, Massey University, Palmerston North
²Institute of Veterinary Animal and Biomedical Sciences, Massey University, Palmerston North
the experimental diet during a 14 day period. Sheep were moved indoors for a further 14 day period to adapt to individual metabolism crates and hourly feeding (50 gDM/h), prior to commencement of treatments. Water was available ad libitum. All procedures described herein were approved by the Animal Ethics Committee of AgResearch Limited (number 44/03).

Treatments, infusion and sampling
A completely randomised block design (6 sheep per block) was used with period of infusion (n = 2) as a blocking factor. A continuous infusion of propane-1,2-diol (PD; 99.5%; Asia Pacific Specialty Chemicals Limited.) was administered to all sheep at a rate of 5 ml/h via a multi channel variable speed peristaltic pump (Watson-Marlow Ltd.) for 72 hours to allow equilibration of PD concentration in the rumen. Control sheep (n = 6) continued to receive skatole-free PD infusion while treated sheep (n = 6) received PD containing 28 mg/ml skatole (3-methylindole, 98%; Aldrich Chemical Company, Inc.), supplying a total skatole dose of 140 mg/h for a period of 72 hours. Skatole infusate was prepared daily to minimise skatole oxidation prior to administration.

Rumen fluid and peripheral blood samples were collected at 0, 2, 4, 6, 8, 12, 16, 24, 48 and 72 hours relative to the start of the treatment infusion. Whole rumen digesta samples were strained through muslin cloth to allow collection of the liquid fraction. Aliquots of fluid were snap-frozen in liquid nitrogen to inhibit microbial skatole production and stored at -20°C. Peripheral blood was collected via a jugular catheter into syringes containing potassium-EDTA anticoagulant. Blood samples were kept chilled, plasma was separated by centrifugation, snap-frozen in liquid nitrogen and stored at -85°C. All sheep were euthanased at 72 hours from the start of their treatment infusion period. Samples of liver and inter-muscular fat from the hind leg were collected, snap-frozen in liquid nitrogen and stored at -85°C.

Analytical methods
Skatole concentration in rumen fluid was determined using the high performance liquid chromatography (HPLC) method of Mattivi et al. (1999) modified by Tavendale et al. (2005). Plasma skatole concentration was determined using the ether extraction method of Claus et al. (1993) and HPLC analysis (Schreurs et al., 2003). The skatole content of inter-muscular fat was determined using gas chromatograph mass spectrometry following simultaneous distillation-extraction as described by Schreurs et al. (2006).

Modelling skatole flux
A two-compartment model (Figure 1) was fitted to the rumen and plasma concentration data (Thomas & Beadle, 1985) from six skatole-infused sheep using the population study algorithm from WinSAAM (Wastney et al., 1999).

FIGURE 1: A two-compartment model fitted to the rumen (compartment 1) and plasma (compartment 2) skatole data of rumen skatole-infused sheep provides an estimated rate of transfer from rumen to peripheral blood $k_{(2,1)}$ and an estimated rate of clearance from the peripheral circulation $k_{(0,2)}$.

Compartment 1 was assumed to be the rumen liquid phase. Skatole entering into this compartment was calculated as the hourly rate of skatole infusion multiplied by an assumed partition coefficient of skatole into the liquid phase (k_{sol}) of 21% (Hammond et al., 1984), with the remaining skatole precipitating and becoming associated with the particulate fraction. The volume of compartment 1 was assumed to be 10% of the liveweight of the animal (de Vega et al., 1998). Compartment 2 represents absorbed skatole, assuming an apparent volume of distribution of skatole of 1.3 l/kg LW (Friis, 1993). First order kinetics were assumed for the two compartments, with rates of transfer defined as $k_{(2,1)}$ for transfers from rumen to plasma and $k_{(1,2)}$ for transfer from plasma to rumen. Initial fit indicated that $k_{(1,2)}$ was close to zero and was therefore removed from the model (Figure 1). Additional loss from the rumen was assumed to occur in the form of passage of liquid to the post-ruminal compartment: $k_{(0,1)} = 0.07$ (average of Karsli & Russell, 1999 and Uden et al., 1982).

The rate of disappearance from compartment 2 (i.e. $k_{(0,2)}$) was assumed to represent the capacity of individual sheep to metabolise skatole and skatole accretion into body tissues. Skatole concentrations measured from
control animals (multiplied by rumen liquid and plasma volume) were used to define the initial conditions for the two compartments.

Statistical analysis

Rumen and plasma data was statistically analysed using GenStat, version 8.11 (Lawes Agricultural Trust, 2005). As variance of the measurements in the control group was considerably lower than those of the skatole group, a non-parametric Kruskal-Wallis analysis of variance test was used to compare the skatole concentration data in rumen fluid and plasma between the two groups. Tests of rumen and plasma data were done at 6, 16 and 72 hours. Skatole concentration in inter-muscular fat was analysed using the MIXED procedure of SAS (2002, v. 9.1 SAS Institute). Fixed effects included treatment, while heterogeneous variances between groups were dealt with by using the grouping variance option in the "repeated" statement of the procedure, using sheep as the subject (i.e. random effect). A simple covariance matrix (i.e. variance components) was deemed to be the most appropriate structure underlying the data. Significant difference between treatments was declared when the probability was less than 0.05.

RESULTS

Animals, intakes and infusion rates

There was no significant difference between the mean live weight of sheep allocated to skatole (40.5 kg) and control (42.1 kg) infusions (P = 0.44). All sheep ate 100% of the pelleted ration offered hourly during the infusion period. Actual rate of skatole infusion was 140.84 mg/h.

Rumen, plasma and fat skatole

The endogenous production of skatole (i.e. from rumen degradation of dietary tryptophan) was effectively minimised by the diet. Mean skatole concentration (±SEM) was 0.02 ± 0.02 µg/g in rumen fluid and 0.74 ± 0.77 ng/ml in plasma of control sheep during the treatment period. There was no significant effect (P = 0.90) of period of infusion (blocks) on rumen or plasma skatole concentrations measured. Infusion of skatole generated a rapid rise in skatole concentration in both the liquid fraction of the rumen and peripheral blood (Figure 2). Mean skatole concentration in the rumen fluid and peripheral circulation of skatole-infused sheep was greater (P < 0.01) than control sheep at all times following the start of infusion. At 72 hours, the mean concentration of skatole (± SEM) in rumen fluid and plasma was 20.6 ± 6.5 µg/g and 154.2 ± 87.3 ng/ml in treated sheep and 0.01 ± 0.03 µg/g and 0.89 ± 0.91 ng/ml in untreated sheep respectively.

FIGURE 2: Mean skatole concentration in rumen fluid (■; µg/g) and plasma (▲; ng/ml) of sheep receiving a continuous rumen infusion of skatole (141 mg/h; n = 6). Skatole concentrations in rumen fluid (0.02 ± 0.02 µg/g) and plasma (0.74 ± 0.77 ng/ml) of control sheep (n = 6) were unchanged throughout the treatment period (data not shown). Error bars shown are the SEM.

Skatole concentration in inter-muscular fat from the hind leg was (P < 0.001) increased by the skatole infusion resulting in a mean (± SEM) concentration of 4240 ± 1720 ng/g and 15 ± 15 ng/g in skatole-infused and control groups, respectively. Fitting the model described in Figure 1 to the experimental data resulted in estimates for parameter $k(2,1)$ of 0.22 ± 0.02/h and for parameter $k(0,2)$ of 2.08 ± 0.35/h via all routes of clearance. Rates of skatole clearance in treated sheep ranged from 1.11/h to 4.47/h of the total absorbed skatole pool.

TABLE 1: Mean skatole flux in treated sheep (n = 6) as predicted using the two compartment model described in Figure 1, using population parameters generated from the WinSAAM population algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Rate (g/day)</th>
<th>90% confidence interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflow into rumen liquid</td>
<td>0.710</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Outflow from rumen to intestine</td>
<td>0.160</td>
<td>0.157 – 0.164</td>
</tr>
<tr>
<td>Absorption from rumen k(2,1)</td>
<td>0.549</td>
<td>0.545 – 0.553</td>
</tr>
<tr>
<td>Clearance from circulation k(0,2)</td>
<td>0.549</td>
<td>0.545 – 0.553</td>
</tr>
</tbody>
</table>

1 Of mean given a two tailed normal distribution.

2 Assuming transfer from peripheral blood to rumen k(1,2) to be zero.

There was a negative correlation (-0.73, R² = 0.47, P < 0.05) between rate of plasma skatole elimination and concentration of skatole in hind leg fat depots.
DISCUSSION

The present experiment has minimised endogenous skatole production and generated a significant elevation in skatole concentration in both rumen fluid and peripheral circulation via a continuous administration of skatole to the rumen.

The high rates of elimination of skatole from the peripheral circulation observed in this study are consistent with the high capacity of skatole metabolism in tissues. According to the model described herein, estimated pool sizes of absorbed skatole ranged from 5 to 18 mg. In pigs, hepatic detoxification of endogenous (hind gut) skatole has been reported to reach up to 3 mg/h (Babol et al., 1998).

Hepatic detoxification of skatole is mediated by cytochrome P450 microsomal enzymes (Diaz et al., 1999) and these enzymes can be induced by skatole in isolated pig hepatocytes (Doran et al., 2002). In this study, induction of P450 enzymes in the liver and increase of clearance of skatole by other tissues (e.g. lung, kidney, fat deposition: Laue et al., 1998) may account for the high rates of clearance of absorbed skatole observed. The negative correlation between estimated plasma skatole clearance and body fat deposition suggests that changes in activity of hepatic enzymes may be partly responsible for the high rates of skatole clearance described by our model. Studies where cytochrome P450 activity in porcine liver is increased report a negative correlation with skatole concentration in body fat (Squires & Lundstrom, 1997; Babol et al., 1998; Zamaratskaia et al., 2006).

Estimated rates of skatole clearance were highly variable between individuals suggesting that significant variation in the hepatic and / or extra-hepatic response to skatole exposure may exist within the New Zealand sheep population.

The generation of contrasting skatole exposure to the liver has enabled the collection of hepatic tissue likely to have differentiated skatole-related gene expression. These tissues may assist in the identification of genes involved in mediating skatole metabolism and whose activity may ultimately explain the variable deposition of skatole in body fat that we have observed between individuals.

ACKNOWLEDGEMENTS

This research was funded by the Foundation for Research, Science and Technology. The authors gratefully acknowledge Dr G.A. Lane and Mr K. Fraser for scientific and analytical assistance and Mr P.J. Schreurs, Mr B.R. Sinclair and Ms B. Knoch for technical assistance.

REFERENCES

Claus, R.; Dehnhard, M.; Herzog, A.; Bernal-Barragan, H.; Gimenez, T. 1993: Parallel measurements of indole and skatole (3-methylindole) in feces and blood plasma of pigs by HPLC. Livestock production science 34: 115-126
Doran, E.; Whittington, F.W.; Wood, J.D.; McGivan, J.D. 2002: Cytochrome P450HIE1 (CYP2E1) is induced by skatole and this induction is blocked by androstenone in isolated pig hepatocytes. Chemico-biological interactions 140: 81-92
administration on the quantitative absorption to the portal vein in growing intact male pigs. Canadian journal of animal science 78: 69-79

Schreurs, N.M.; McNabb, W.C.; Tavendale, M.H.; Lane, G.A.; Barry, T.N.; Cummings, T.; Frazer, K.; Lopez-Villalobos, N.; Ramírez-Restrepo, C. 2006: Skatole and indole concentration and the odour of fat from lambs that had grazed perennial ryegrass/white clover pasture or Lotus corniculatus. Animal feed science and technology (Submitted)

Squires, E.J.; Lundström, K. 1997: Relationship between cytochrome P450IIIE1 in liver and levels of skatole and its metabolites in intact male pigs. Journal of animal science 75: 2506-2511

Tavendale, M.H.; Lane, G.A.; Schreurs, N.M.; Fraser, K.; Meagher, L.P. 2005: The effects of condensed tannins from Dorycnium rectum on skatole and indole ruminal biogenesis for grazing sheep. Australian journal of agricultural research 56: 1331-1337

Young, O.A.; Lane, G.A.; Priolo, A.; Frazer, K. 2003: Pastoral and species flavour in lambs raised on pasture, lucerne or maize. Journal of the science of food and agriculture 83: 93-104