New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Share — copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
REVIEW: Epidemiology of Johne's disease in farmed red deer (*Cervus elaphus*) in New Zealand

C.G. MACKINTOSH

AgResearch Invermay, P.O. Box 50-034, Mosgiel, New Zealand

ABSTRACT

Johne's disease, caused by *Mycobacterium avium* subsp *paratuberculosis* (*M. ptb*), has emerged as a significant cause of losses on deer farms in New Zealand. It causes outbreaks of fatal clinical disease in young deer eight to 15 months of age, sporadic deaths in adults and production losses due to poor growth rates in yearlings, reduced calving percentages in hinds, reduced velvet production in stags, interference with tuberculosis testing and tuberculosis-like lesions in gut lymph nodes at slaughter. Although bovine and ovine strains have been isolated from deer, the bovine strain is more pathogenic and is responsible for the outbreaks of serious disease in young deer. Clinical disease results from heavy early challenge of young deer with the bovine strain. Mature animals are relatively resistant to infection. Calves are generally infected via the oral route from contaminated pasture and water. Intrauterine transmission to the foetus occurs commonly in clinically and subclinically infected hinds and infected milk may also play a role in transmission. Deer-to-deer transmission appears the most common route, although cattle-to-deer and sheep-to-deer transmission may occur. The role of wildlife is not known. Resistance to Johne's disease has a genetic component, which appears to be related to resistance to bovine tuberculosis.

Keywords: deer; Johne's disease; *Mycobacterium avium* subsp *paratuberculosis*; epidemiology.

INTRODUCTION

Johne's disease, also known as paratuberculosis, which is caused by *Mycobacterium avium* subsp *paratuberculosis* (*M. ptb*), has emerged as a problem on deer farms or enclosures in the United Kingdom (Fawcett *et al.*, 1995; Gilmour, 1988), Europe (Commichau, 1982; Godfroid *et al.*, 2000; Power *et al.*, 1993), North America Manning *et al.*, 1998; Starke, 1991), South America (Mereb *et al.*, 1994), Australia (Schroen *et al.*, 2003) and New Zealand (Gumbrell, 1986; Mackintosh, 1998). It was first confirmed in farmed red deer in New Zealand in the mid 1980s. Since then the incidence of Johne's disease has increased steadily. Between 1986 and 2000, *M. ptb* was confirmed by culture and/or polymerase chain reaction (PCR) from 619 farmed deer in 299 herds (de lisle *et al.*, 2003), with over 85% of cases occurring in the second half of that period. Only 5.8% of these cases were from clinically affected animals, while the majority were from tuberculosis-like lesions found in lymph nodes at meat inspection in deer slaughter premises. From 2001 to 2005, *M. ptb* was isolated from 1,141 farmed deer in over 600 deer herds in New Zealand, representing an observed prevalence of ~15% for the estimated 4,000 deer farms (de Lisle *et al.*, 2003). The prevalence of subclinical *M. ptb* infections in farmed deer is not known, but up to 10% of animals in some lines of apparently normal deer have had macroscopic lesions in mesenteric lymph nodes at slaughter (Mackintosh *et al.*, 2004). It is highly probable that the actual prevalence is much higher and many subclinically infected animals do not have macroscopic evidence of infection. The prevalence appears to have been increasing over recent years and a nationwide case-control study in 2005 found *M. ptb* was geographically widespread on deer properties throughout both North and South Islands (Glossop *et al.*, 2006). In 2007 it was reported that 50% of New Zealand deer herds have serological evidence of *M. ptb* infection (Griffin *et al.*, 2007).

Johne's disease has emerged as a significant cause of production losses on deer farms. In addition to outbreaks of fatal clinical disease in young deer six to 15 months of age and sporadic deaths in adults, deer farmers may experience losses due to poor growth rates in yearlings, reduced calving percentages in hinds, reduced velvet production in stags, interference with testing for bovine tuberculosis (tuberculosis) and tuberculosis-like lesions in gut lymph nodes at slaughter (Glossop *et al.*, 2006; Mackintosh *et al.*, 20040).

EPIDEMIOLOGY

The epidemiology of Johne's disease in farmed deer is likely to have much in common with cattle and sheep. Research over the last 10 years has led to a better understanding of the specific features of the epidemiology of Johne's disease in farmed deer and how it differs from other domestic livestock. A nationwide case-control study has been undertaken to determine some of the risk factors of Johne's disease on deer farms in New Zealand (Glossop *et al.*, 2007b).
Recently a new database has been set up by Johne’s Management Limited based on the detection of Johne’s lesions at slaughter, and this should provide useful data in the future (Glossop et al., 2007a).

Strain of *M. ptb*

In New Zealand and Australia, sheep are generally infected with the “ovine” or “S” strain and cattle are infected with the “bovine” or “C” strain of *M. ptb* (Collins et al., 2002; Whittington et al., 2000a). Both strains have been isolated from deer (de Lisle et al., 1993; de Lisle et al., 2006), although the bovine strain was found on >95% of the 95 infected farms studied. Evidence from the field suggests that the “bovine” strain is responsible for the majority of serious outbreaks of clinical disease in young red deer (O’Brien et al., 2006). An oral challenge study was carried out to compare the virulence of “bovine” and “ovine” strains of *M. ptb* in young red deer, and the results showed that the “ovine” strain, which had been isolated from a clinical case of Johne’s disease in a sheep, was considerably less virulent for red deer than the “bovine” strain, which had been isolated from a clinical case of Johne’s disease in a deer (Mackintosh et al., 2007). Thus there is a potential risk of cross-species infection with grazing deer with other livestock, especially cattle (Mackintosh & Wilson, 2005). A recent study showed that the prevalence of Johne’s disease in weaner deer was negatively associated with the proportion of days grazed by sheep on the deer unit compared with all stock units, but was positively correlated with grazing beef yearlings on the deer farm (Glossop et al., 2007b). As with sheep and cattle, one of the greatest risk factors is the introduction of infected deer from other herds.

Dose

It has been shown in sheep and cattle that heavy exposure to *M. ptb* early in life is likely to lead to severe clinical Johne’s disease (Nisbeth et al., 1962; Reddacliff & Whittington, 2003; Sweeney et al., 2006). A challenge study in young red deer showed that there was a direct correlation between the dose rate of the “bovine” strain and severity of disease in young red deer (Mackintosh et al., 2007). The minimal oral infective dose was close to 10^3 organisms for this “bovine” strain, while clinical disease resulted from an oral dose $>10^9$ organisms. Clinical Johne’s disease in yearling red deer is likely to result from high early challenge with the “bovine” strain of *M. ptb*.

Age susceptibility

There is evidence from studies in sheep and cattle that there is increasing resistance to Johne’s disease with age. Although sheep and cattle may be infected as adults they are much less likely to develop serious lesions or clinical disease (Clarke, 1997; Larsen et al., 1975; Rankin, 1962). Sheep and cattle generally do not develop clinical disease until they are two to four-years-old, although under experimental conditions young lambs <14 days-old exposed to very heavy challenge of $>10^9$ colony forming units, developed severe disease in less than six months (Nisbeth et al., 1962). It is assumed that deer exposed to early challenge are more likely to develop clinical disease, and the development of clinical signs of Johne’s disease in deer as young as eight months of age suggests very heavy early challenge.

Genetic resistance/susceptibility

Genetic resistance/susceptibility is thought to play a role in Johne’s disease in dairy cattle (Gonda et al., 2006; Gonda et al., 2007; Koets et al., 2000) and sheep (Hickey et al., 2003; Reddacliff et al., 2005) and it is likely to be important in deer as well. Estimates of the heritability of resistance to Johne’s disease range from 0.06 in cattle in Holland (Koets et al., 2000) to 0.1 in cattle in Denmark (Mortensen et al., 2004) and to 0.18 in Merino sheep (Hickey et al., 2003). There has also been a recent report of a quantitative trait loci (QTL) on BTA20 affecting susceptibility to *M. ptb* infection in United States Holsteins (Gonda et al., 2007). A study of transmission of Johne’s disease in dairy cattle in Denmark concluded that the parental contribution was significant, and both heritability of susceptibility and vertical transmission should be considered in any control programs (Neilsen et al., 2000).

Over the last 10 years, considerable insight into genetic resistance of red deer to tuberculosis has been gained (Mackintosh et al., 2000) and semen has been collected from some stags that showed resistance or susceptibility to tuberculosis in order to breed offspring with these attributes for further research. A recent *M. ptb* challenge trial showed a strong correlation between resistance to bovine tuberculosis and resistance to *M. ptb* (C.G. Mackintosh, Unpublished data).

Routes of transmission

Traditionally, the faecal-oral route is regarded as the most important route of transmission of Johne’s disease, but transmission can also occur across the placenta and via colostrum or milk (Sweeney, 1996).

Faecal-oral: A proportion of infected animals shed large numbers of *M. ptb* in their faeces (Collins, 2003), resulting in contamination of pasture, water, concentrate feed and teats, and ingestion is the most likely route of infection (Valentin-Weigand & Goethe, 1999). It has been shown that M cells in the epithelium of intestinal tract are targeted by *M. ptb* for attachment and
provide a means of gaining entry into the animal (Sigururdardottir et al., 2004).

The oral route has been used in many experimental infection trials in sheep, cattle and deer (Hines, et al., 2007). Most trials have successfully infected the animals, but many have failed to produce clinical Johne’s disease and have attributed this failure to a number of factors including the strain of M. ptb, the use of cultured organisms that may have become attenuated and older animals being less susceptible.

Transplacental: Intra-uterine transmission in clinically affected animals has been demonstrated in cattle (Kopecky et al., 1967; Lawrence, 1956; McQueen D, 1979; Pearson & McClelland, 1955; Seitz et al., 1989) and sheep (Lambeth et al., 2004), and recently in deer (Deutz et al., 2003; van Kooten et al., 2006). There is a high risk of transmission of M. ptb from clinically affected red deer hinds to their foetuses during pregnancy, with 90% of hinds having an infected foetus (van Kooten et al., 2006). In a second study, M. ptb was isolated from 58% of the foetuses of a group of 18 subclinically infected red deer hinds (Thompson et al., 2007). In sheep and cattle, by contrast, it has been reported that transmission to the foetus occurs in <10% of subclinically affected animals (Kopecky et al., 1967; Lambeth et al., 2004; Sweeney et al., 1992). A recent meta-analysis showed that 9% (95% c.l. 6-14%) of foetuses from subclinically infected cows and 39% (20-60%) from clinically affected cows were infected with M. ptb (Whittington & Windsor, 2007). The true rates of infection are thought to be higher than these figures suggest due to the sensitivity of culture methods being less than 100%. The incidence of cattle-calf infection derived via the in utero route was estimated to be in the range 0.44 to 1.2 infected calves per 100 cows per annum. in herds with within-herd prevalence of 5% and 3.5 to 9.3 in herds with 40% prevalence.

Via milk: M. ptb is shed in the milk of infected cattle and sheep (Collins, 2003) and it is very likely that infected hinds can transmit infection to their fawns via this route since M. ptb was isolated from 67% (12/18) of subclinically infected hinds (Thompson et al., 2007).

Wildlife

M. ptb has been isolated from rabbits (Oryctolagus cuniculus cuniculus), foxes and stoats (Mustela erminea) in the UK (Beard et al., 1999; Greig et al., 1997), a variety of wildlife in Australia (Cleland et al., 2001) and ferrets in New Zealand (de Lisle et al., 2002), suggesting that wildlife may act as a source of infection for farmed deer, as well as sheep and cattle. Recently a survey of wildlife was conducted in the vicinity of three Johne’s affected deer farms in Canterbury, and M. ptb was isolated from a wide range of small animals and birds (Nugent et al., 2007). The significance of interspecies transmission of M. ptb is open to much speculation because it is relatively easy to show associations, but it is difficult to prove causal relationships. One factor that may facilitate interspecies transmission is that animals tend not to avoid the faeces of other grazing species (Greig, 2005). For example cattle calves have been shown to ingest rabbit faecal pellets (Daniels et al., 2001; Judge et al., 2005).

Rates of shedding and survival of M. ptb in the environment

Clinically affected animals generally excrete large numbers of M. ptb organisms and represent the most obvious source of infection. However, it has been shown in cattle (Bolton et al., 2005) and sheep (Whittington et al., 2000b) some subclinically infected individuals may also excrete significant numbers of organisms. Stress and pregnancy may increase the rate of shedding.

In deer the rate of excretion appears to be related to the severity of disease and the strain of M. ptb (Mackintosh et al., 2007). Deer that received the highest dose of cattle strain M. ptb developed the most severe lesions, had the highest levels of antibody and were the heaviest excretors.

M. ptb organisms are able to survive for up to 11 months in soil (Collins, 2003), although there are a wide range of environmental factors that can affect the survival rate (Norby et al., 2007).

CONCLUSION

In farmed red deer, outbreaks of clinical disease generally occur in red deer eight to 12 months of age, suggesting high early challenge with the bovine strain of M. ptb. A proportion of these cases may be due to intra-uterine infection because of the high rate of transmission in clinically and subclinically affected hinds. Early exposure may also occur via milk or by grazing in close contact with infected hinds.

ACKNOWLEDGEMENTS

Funding for AgResearch Invermay studies was provided by the Foundation for Research, Science and Technology, and DEEResearch.

REFERENCES

Collins, D.M.; De Zoete, M.; Cavaignac, S.M. 2002: Mycobacterium avium subsp paratuberculosis strains from cattle and sheep can be distinguished by a PCR test based on a novel DNA sequence difference. Journal of clinical microbiology 40: 4760-4762.

