New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:
- Share — copy and redistribute the material in any medium or format

Under the following terms:
- Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- NonCommercial — You may not use the material for commercial purposes.
- NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
INTRODUCTION

Insulin-like growth factor-1 (IGF-1) is a small peptide, produced mainly in the liver. It controls the growth and differentiation of many cell types through stimulation of the cell cycle (Rechler & Nissley, 1990). IGF-1 has been implicated as being involved in many biological processes and is thought to be related to milk production and reproductive potential of the dairy cow due to its association with the partitioning of nutrients among biological functions (Bauman & Currie, 1980) and its direct stimulatory affect on the ovaries (Spicer et al., 1993).

Recent studies in Holstein-Friesian (HF) cows on pasture-based diets found that plasma IGF-1 concentrations in early lactation were affected by nutrient intake, and that inter-animal variation was greater than within-animal variation (Obese, 2003). This was confirmed in pasture based diets by a study conducted in New Zealand by Fahey et al. (2003). Studies by Moyes (2004) show there is an opportunity to rank cows within a herd on their plasma concentrations of IGF-1 after assaying a limited number of samples within a lactation, or possibly over a lifetime. The rankings have the potential to be related to parameters for milk yield and composition as well as reproductive performance and could therefore be used as a tool in dairy cow management and breeding programs.

Selecting for low IGF-1 to improve feed conversion efficiency in pigs and young beef cattle is currently practiced on a commercial basis in Australia (Johnston et al., 2002). Heritability estimates of 0.18 to 0.48 have been reported for plasma IGF-1 in dairy and beef cattle (Davies et al., 2000; Grochowska et al., 2001; Johnston et al., 2001). Such estimates indicate sufficient genetic variation for the gradual alteration of IGF-1 concentrations through breeding selection. The objectives of the present study were to derive heritability estimates for plasma concentrations of IGF-1 in HF cows in Victorian herds as well as genetic correlations between IGF-1 and milk yield and composition parameters.

MATERIALS AND METHODS

Approximately 5,800 HF cows in 21 commercial herds throughout Victoria were included in the study. Blood samples were collected from the tail vein of each cow around the start of the mating period. Samples were placed on ice immediately, centrifuged at 1,800 x g for 10 minutes, and plasma was frozen at -20ºC until assays were undertaken. Concentrations of total IGF-1 were measured using the DSL-10-2800ACTIVETM Non-extraction IGF-1 ELISA kit (Diagnostic Systems Laboratories, Webster, Texas, USA) in the laboratories of Primegro Ltd, Adelaide, according to the methods of Obese et al. (2008). Inter-assay variation (Coefficient of variation) was 6.9% for Kit Control A (low) and 4.3% for Kit Control B (high). Mean intra-assay variation was 4.5% (low) and 3.0% (high). Milk production data were obtained from monthly or bimonthly herd test records. Milk fat and protein composition was determined by near infrared spectroscopy using a Fossmatic 4000/5000 Combi (Foss Electric, Denmark) at the commercial herd testing laboratories used by each herd. Heritabilities and genetic correlations of IGF-1 and milk yield were calculated using ASReml (Gilmour et al., 2006) with age, herd, year/season, calving system and days in milk at the time of blood sampling as fixed effects and sire as a random effect. Cows were only included in this analyses if they were in at least their second lactation, and their sire had at least four other daughters in the study regardless of which herd they were in. This resulted in 2,860 cows and 159 sires in the analyses.

RESULTS AND DISCUSSION

Heritability for IGF-1, 305-day milk yield and 305-day milk protein yield was moderate, while the heritability for 305-day fat yield was low (Table 1). The genetic correlation between plasma IGF-1 and milk production was moderate and negative for all of the milk production traits considered (Table 1).

The heritability estimates for plasma concentrations of IGF-1 calculated in this study are within the range of 0.18 to 0.48 that has been
TABLE 1: Means and heritabilities of plasma IGF-1, 305-day milk, fat and protein yields, and genetic correlations between IGF-1 and 305-day milk, fat and protein yields.

<table>
<thead>
<tr>
<th>Trait</th>
<th>Mean ± Standard Deviation</th>
<th>Heritability ± Standard Error</th>
<th>Genetic Correlation with IGF-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma IGF-1</td>
<td>90 ± 39.3 ng/mL</td>
<td>0.21 ± 0.05</td>
<td>NA</td>
</tr>
<tr>
<td>305-day milk yield</td>
<td>7,471 ± 1,988.4 kg</td>
<td>0.22 ± 0.06</td>
<td>-0.25</td>
</tr>
<tr>
<td>305-day fat yield</td>
<td>292 ± 74.5 kg</td>
<td>0.10 ± 0.04</td>
<td>-0.31</td>
</tr>
<tr>
<td>305-day protein yield</td>
<td>250 ± 62.5 kg</td>
<td>0.17 ± 0.06</td>
<td>-0.20</td>
</tr>
</tbody>
</table>

reported for dairy and beef cattle in recent studies (Davies et al., 2000; Grochowska et al., 2001; Johnston et al., 2001). The heritability estimate for milk yield in the current study was identical to that calculated in an Irish study with 6,000 cows (Berry et al., 2003) and similar to that calculated in an Australian study with 3,000 cows (Madgwick et al., 1991) where heritability of milk yield was reported as 0.16. A review by Veerkamp (1998) reported that heritabilities for milk yield ranged from 0.16 to 0.50. Moderate heritability of IGF-1 indicates that it could be gradually altered by genetic selection. A moderate negative genetic correlation between IGF-1 and milk yield means that many of the same genes affect these two traits. Since IGF-1 has a similar heritability to, and moderate genetic correlations with milk production factors, cows are predisposed to decreasing plasma IGF-1 with selection for increased milk yield. This effect was particularly evident in an Irish study that compared the North American derived HF strain to the New Zealand strain (McCarthy et al., 2005). The study showed that the North American strain cows (bred for higher milk production) had significantly lower plasma IGF-1 than the New Zealand strain cows. Further analyses will investigate the genetic correlations between IGF-1 and fertility for this cow population.

Preliminary investigations indicate a significant phenotypic relationship between IGF-1 and fertility in dairy cows in Victorian herds. If genetic correlations confirm this, there may be the potential to use IGF-1 in the dairy industry as a marker for performance potential. For example, it could be incorporated into a multi-trait selection index to allow selection for high milk yield without affecting fertility.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the generosity and cooperation of the study herd owners and all University of Melbourne and Primary Industry Research Victoria employees who provided technical support. This research was part of the Dairy IGF-1 Project funded by Dairy Australia, Genetics Australia and Primegro Ltd.

REFERENCES


