New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

 Share — copy and redistribute the material in any medium or format

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
 NonCommercial — You may not use the material for commercial purposes.
 NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
The effects of zeranol or zinc supplementation before lambing on the incidence of vaginal prolapse in twinning ewes

A.J. LITHERLAND1, T.W. KNIGHT1, D.B.O. MCDOUGALL1, T.G. COOK2, J. SPROSEN3 and M.G. LAMBERT1

1AgResearch Grasslands, Palmerston North
2Manawatu Veterinary Services, Feilding
3AgResearch Ruakura, Hamilton

ABSTRACT

The objectives were to determine whether Zeranol (ZER) and its metabolites or pharmacological zinc levels could change the incidence of vaginal prolapse (bearings) in ewes. In the ZER experiment 100 twin pregnant ewes were controls, a further 50 ewes each received either two low (24 mg and then 12 mg) or two high (36 mg and then 24 mg) doses of zeranol (ZER) implants separated by a four-week interval with 65% of treated ewes receiving an additional 12 mg implant at set stocking. Urine samples were collected from 12 ewes, twice weekly, bulked into three samples and analysed for Zearalenone (ZEN), ZER and creatinine. Two weeks after receiving an implant, the ZER:creatinine ratio increased from 2.6 in C ewes to 21, 30 and 36 and the ZEN ratio from 3.25 to 6.7, 10.8 and 14.7 following treatment with 12, 24 and 36 mg of ZER (P<0.01). One month after treatment the ZER and ZEN ratios had decreased but were still higher in treated than control ewes (ZER 3.6 vs. 11, P<0.01; ZEN 1.2 vs. 5.2, P<0.01). The bearing incidence was 3%, 2% and 2% for control, low and high dose ZER respectively.

In the second experiment 100 scanned twin or triplet pregnant ewes were administered with 72 g of zinc oxide (The Time Capsule ®) as a ruminal bolus 4-6 weeks before lambing on four farms with historical high incidences of bearings. Pre-treatment and all control serum zinc concentrations were low (9.4 ± 0.2 mmol/L) but not considered deficient. Zinc supplementation increased serum zinc concentrations to 21.5 mmol/L (P<0.001). Bearing incidence was higher (P<0.001) in zinc-treated (4%) than in control ewes (1.9%). In conclusion, bearings are not caused by ingestion of ZEN in late pregnancy. The role of zinc in bearings warrants further study.

Keywords: vaginal prolapse, ewes, zearalenone, zeranol, zinc

INTRODUCTION

Vaginal prolapse (bearings) is likely to have multifaceted causes associated with excessive internal vaginal pressure and/or premature birth tract relaxation, which combine to cause the unpredictable outbreaks of bearings on New Zealand farms. In order from most to least importance, vaginal internal pressure is increased by sheep lying down, by steeper slopes, by increased liveweight (e.g. multiple-pregnant ewes) and in ewes consuming greater quantities of feed in late pregnancy (McLean & Claxton, 1960). In an epidemiological study, ewes fed better in early pregnancy have a greater likelihood of bearings presumably due to an increase in placenta size and a subsequent greater internal vaginal pressure (Hilson et al., 2002). However the metabolic and hormonal factors associated with premature birth tract relaxation are not well known.

Zearalenone (ZEN) is an oestrogenic mycotoxin produced by the saphrophytic Fusaria fungi that proliferate on dead matter in pastures during autumn. Levels of urine ZEN:creatinine ratio above 10 in mating ewes reduce ewe oestrous activity, ovulation and fertilisation rates and reduce lambing percentage (Smith & Morris, 2006). We have observed mean urine ZEN:creatinine ratios of 3.7, and up to 9.7, in groups of pregnant ewes at the end of winter. Zearalenone causes vaginal prolapse in pigs (Young et al., 1979, Rainey et al., 1990). One of the objectives in this experiment was to determine if high levels of ZEN could trigger bearings in ewes. This hypothesis was tested by treating ewes with zeranol (® Ralgro), whose active ingredient α-zearalanol, is metabolised to zearalenone and other zearalenone like metabolites (Kleinova et al., 2002). Zeranol (ZER) is an anabolic steroid, with oestrogen-like activity, which is administered to male cattle to improve liveweight gain and feed efficiency (Nold et al., 1992).

The second objective was to determine if zinc supplementation could impact on the incidence of bearings. Zinc interacts with a large number of hormones including thyroid hormones, steroids,
insulin, and pituitary hormones, particularly prolactin (Fitzgerald et al., 1986). Prolactin concentrations tend to increase over late pregnancy and rise rapidly immediately before the onset of lambing when bearing incidence is highest. Zinc also antagonises the action of calcium necessary for the functioning of these hormones (Brandao-Neto et al., 1995). Large amounts of zinc supplementation may also alter the uptake and metabolism of other cations which could be implicated in bearings.

METHOD

Experiment 1
Two hundred twinning Romney ewes (identified by pregnancy scanning on 17 July 2001) were randomised into three treatment groups. The objective of the trial was to induce bearings in most ewes so the small treatment numbers, given the normal low incidence of bearings and potential issues with power analysis, was considered acceptable. Treatment groups were balanced for liveweight and condition score. One hundred twin pregnant ewes were controls, a further 50 ewes each received either two (57 and 29 days lambing), low (24 mg and then 12 mg) or two, high (36 mg and then 24 mg) doses of zeranol separated by a four-week. The lower dose of the second implant offset any potential carry over effect from the first implant. Sixty five percent of treated ewes receiving an additional 12 mg implant at set stocking. Zeranol implants were placed subcutaneously on the back side of the ear using a Ralgro-gun. Ewes were set stocked two days before the expected start lambing date of 20 September 2001 though unexpectedly some ewes had lambed over the preceding week. The treatment groups were grazed together on steep hill country on Ballantrae Research station from scanning until docking. The ewes were observed daily for bearings from six weeks before lambing. When culled for age, ewes did not enter the human food chain. Administration of treatments was supervised by a veterinarian and via animal ethics proposal number 6020.

Urine samples were collected from 12 ewes, twice weekly, bulked into three samples and analysed for ZEN, ZER and creatinine. The ZEN was assayed using the ELISA test which recognises zearalenone but also has cross reactivity with α-Zearalenol (220%), β-Zearalenol (60%), α–Zearalanol (Zeranol, 110%), β-Zearalanol, Zearalanone, and c-Zearalenonol (Garthwaite et al., 1994; Miles et al., 1996). The ZER was assayed using the Ridascreen Zeranol Enzyme Immunoassay, a kit by R-Biopharm, Darmstadt, Germany.

Experiment 2
One hundred scanned twin or triplet pregnant ewes were administered with 72 g of zinc oxide (The Time Capsule®) as a ruminal bolus 4-6 weeks before lambing on four farms with high historical incidences of bearings. These ewes were grazed with equivalent group of untreated ewes.

A random blood sample was collected by venipuncture from 10 treated and 10 control ewes before treatment and from the same ewes again at set stocking 2-4 weeks after supplementation. Individual serum samples were analysed for β-hydroxy-butyrate (BOH; an indicator of fat mobilisation) and zinc. Samples were bulked by volume and the bulk sample was measured for whole blood selenium, serum calcium, magnesium and copper (Agriquality, Palmerston North).

Farmers recorded bearing incidence.

Statistical analysis
In both experiments the data were analysed using general linear procedures of SAS (1990), and bearing incidence was analysed using chi-square analysis by SAS.

RESULTS

Experiment 1
There was no effect of treatment with ZER on ewe live weight or condition score. The initial ewe live weight and condition score at scanning were low (53.1± 0.5 kg, condition score 2.5) and by set stocking condition score had dropped to 2.34.

In data averaged across all treatments, two weeks after the first implantation, the ZER:creatinine ratio increased to 21, 30 and 36 and the ZEN ratio to 6.7, 10.8 and 14.7 following treatment with 12, 24 and 36 mg of zeranol (P<0.01) (Figure 1). One month after ZER implant, the ZER and ZEN ratios had decreased but were still higher in treated than control ewes (ZER 3.6 vs. 11, P<0.01; ZEN 1.2 vs. 5.2, P<0.01). In treated ewes the ZER ratio after one month of treatment tended (P>0.1) to be higher after the second month (13.1) of treatment compared to the first month (9.1) of treatment. However the ZEN ratio was lower (P<0.05) in both treated and Control ewes in the second month of treatment (Figure 1).

The bearing incidence for these three groups was similar at 3%, 2% and 2% for C, L and H ewes respectively.

Experiment 2
Pre-treatment serum zinc concentrations and control levels were low (9.4 ± 0.2 mmol/L) but not deficient (Grace, 1983). Zinc supplementation increased serum zinc concentrations to 21.5
Figure 1: Urine Zeranol (ZER) and Zearalenone (ZEN): creatinine ratios in ewes receiving no treatment (C control ewes) or low (L 12 mg) or high (H 36 then 24 mg) dose rates of zeranol. Treatment timings are indicated by arrows.

mmol/L (P<0.001). On Farm 3 the serum concentration in treated and control ewes was similar but both were markedly elevated relative to pre-treatment values. These either received some additional zinc source or the remarking of ewes after shearing was not effective and the animals were not accurately identified to treatment.

There was no indication that zinc supplementation adversely affected calcium (2.25 vs. 2.30 mmol/L), magnesium (0.75 vs. 0.78 mmol/L), copper (12.4 vs. 12.6 (µmol/L) or selenium (1525 vs. 1633 nmol/L) blood levels. Urine zearalenone:creatinine ratios ranged from 1.5 to 3.0 on the farms.

Bearing incidence was higher (P<0.001) in Zn-treated ewes (4%) than in control ewes 1.92% (P<0.001) but most of this difference occurred on Farm 4 (Table 1).

DISCUSSION

The zeranol implant was effective at elevating ZEN metabolites in the urine beyond levels found naturally in ewes in late pregnancy and above levels needed to perturb mating performance of ewes in autumn (Smith & Morris, 2006). High ZEN ingestion and ZER treatment are reported to cause vaginal, rectal and uterine prolapse in pigs associated with enlarged reproductive organs and thickening of the vaginal epithelium (Young et al., 1979; Rainey et al., 1990). But no evidence was found in this study for a similar response in ewes treated with ZER.

Zeranol and ZEN and their metabolites share a similar structure and all compete with oestradiol for oestrogen receptors. The primary breakdown product of ZER is ß-zearalanol though ZEN is a minor metabolite in urine of both cattle (Kleinvou et al., 2002) and sheep (Miles et al., 1996). The urine ZEN assay measures a number of various breakdown metabolites of ZEN each with varying bioactivity (Minervini et al., 2001). The assumption made in this experiment, was that the same measured level of ZEN following either ZER or ZEN ingestion has the same bioactivity. This may be an invalid assumption because metabolites arising from ZER treatment, while still being measured by the ZEN assay, may have lower bioactivity. In vivo ZER has weaker oestrogenic effects than does ZEN (Lindsay, 1985).

Unfortunately with the number of sheep and duration of treatment needed to study bearings it is financially prohibitive to treat ewes with ZEN.

In the second experiment, the incidence of bearings was statistically increased by zinc treatment. However, most of this difference occurred on one farm, despite non-treated Zn levels not differing between farms. On the responsive farm the whole mob of older twinning ewes was used as a control and it is possible that this biased the data with respect to Zn treatment.

In two previous years on the same farm, bearing incidence in multiple ewes ranged between 2-4% compared to the 1% in control ewes in this experiment. However, the same trend for bearing incidence to be higher following zinc supplementation was seen on two other farms but treatment groups size were too small for this difference to achieve statistical significance. On the remaining farm it appears that the identification of the ewes to treatment after shearing was

Table 1: Incidence of bearings in twin-pregnant control ewes and ewes treated with a zinc bolus in late pregnancy. P values are CHI square tests of probability.

<table>
<thead>
<tr>
<th>Farm</th>
<th>No. of bearers</th>
<th>No. of ewes</th>
<th>Bearing incidence (%)</th>
<th>No. of bearers</th>
<th>No. of ewes</th>
<th>Bearing incidence (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farm 1</td>
<td>3</td>
<td>100</td>
<td>3.00</td>
<td>47</td>
<td>2700</td>
<td>1.74</td>
<td>0.35</td>
</tr>
<tr>
<td>Farm 2</td>
<td>4</td>
<td>100</td>
<td>4.00</td>
<td>4</td>
<td>150</td>
<td>2.67</td>
<td>0.55</td>
</tr>
<tr>
<td>Farm 3</td>
<td>2</td>
<td>100</td>
<td>2.00</td>
<td>2</td>
<td>100</td>
<td>2.00</td>
<td>1.0</td>
</tr>
<tr>
<td>Farm 4</td>
<td>7</td>
<td>100</td>
<td>7.00</td>
<td>13</td>
<td>1040</td>
<td>1.25</td>
<td><0.0001</td>
</tr>
<tr>
<td>Overall</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.0009</td>
</tr>
</tbody>
</table>
inaccurate. There is not enough statistical strength in this data to conclude that zinc has a role in bearings on farms.

Zinc could cause bearings via hormones associated with birth. High physiological doses of zinc are known to cause abnormal birth processes and increased dilation (Oner et al., 2003) as well as altered progesterone/oestradiol ratios, decreased prostaglandin production (Apgar, 1985; Fitzgerald et al., 1986) and abnormal prolactin metabolism (Fitzgerald et al., 1986; Branda-Neto et al., 1995). Alternatively high doses of zinc could cause a direct perturbation of mineral metabolism seen in other experiment, though not this one, in the blood (Towers et al., 1981; Smith et al., 1984) or tissues (Lee et al., 1991; Rounce et al., 1998).

In an epidemiological study of vaginal prolapse in ewes, salt supplement in late pregnancy increased the chance of a bearing by 1.40 times though the authors speculated this was due to increased water intake rather than a metabolic mineral effect (Hilson et al., 2002). In the same study ewes with elevated serum phosphate concentrations were 2.7 times more likely to have a bearing subsequently than ewes with low phosphate levels. But neither the feeding of anionic salts in mid-pregnancy nor the Ca or vitamin D supplements in late-pregnancy changed bearing incidence (Litherland et al., 2007). Neither could bearings be induced by the ad libitum feeding ewes in late pregnancy on high dietary cation anion balance (620 meq/kgDM) pastures (Litherland et al., 2000). So a potential role of mineral metabolism in the incidence of bearings appears unlikely.

CONCLUSIONS

Until bearing incidence can be reliably manipulated it will be difficult to make progress on causal factors. Zinc supplementation may have increased bearing incidence but confirmation requires further studies. Bearings are not caused by ingestion of ZER in late pregnancy but this does not totally discard the hypothesis that ZEN ingestion is associated with bearings outbreaks.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support of Meat and Wool New Zealand for this study. We are extremely grateful to the following farmers for their participation in Experiment 2 - Andrew Day, Neil Collie, Warrick Day and Peter McDonald. The authors wish to acknowledge the farm staff at Ballantrae Research Station for their assistance.

REFERENCES

Minervini, F.; Dell’Aquila, M.E.; Maritato, F.; Minoia, P.; Visonti, A. 2001: Toxin effects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and 17β-estradiol levels
in mural granulosa cell cultures. *Toxicology in Vitro*, **15**: 489-495

Oner, G; Bilgen, I.; Edremitlioglu, M.; Zlkan, Z.; Cirrik, S. 2003: Dietary zinc modifies the characteristics of endothelial dilation in normozicemic rats. *Biological Trace Element Research* **92**: 123-137.

