New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Sharing — copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Potential benefits from new reproductive technologies in commercial dairy herds; a case study simulation

D.C. SMEATON AND H.W. VIVANCO
AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand

ABSTRACT

New reproductive technologies may provide the possibility to derive the egg component of embryos for dairy cow replacements from only an elite proportion of the dairy herd, or from heifers or calves, thereby creating opportunities for greater genetic gain. Using modeling, four possible selection strategies in two case study herds were compared over 10 years at annual replacement rates of 15, 20 and 25%. In the different strategies, replacement calves were bred from: (1) AB bull + all herd cows, ‘status quo’ vs (2) AB bull + only the top 25% of herd cows vs (3) AB bull + the top 100% of maiden heifers vs (4) AB bull + the top 100% of heifer calves. Assumptions used included (1) an average bull breeding worth (BW) of $135, gaining by $5 per year. (2) A ‘high BW herd’ average BW of $62 (almost in the top 10% of all New Zealand herds). (3) A ‘low BW herd’ average BW of $32 (nearly in the bottom 10%). The model predicted that rate of herd genetic gain increased with replacement rate. The low BW herd gained more than the high BW herd using any of the strategies because it started from a lower base. The BW of the 2 herds converged over 10 years and this effect increased with selection pressure. After 10 years, BWs of 150 and 149 were predicted for the high and low BW herds respectively by using eggs from calves as in Strategy 4 above. This compared with Strategy 1 where herd BWs at year 10 were 130 and 120 respectively.

Keywords: reproductive technologies; dairy; cows, simulation; modelling, breeding worth

INTRODUCTION

Recent progress in the manipulation of cattle reproduction via embryo transfer, cloning, sexing of embryos etc, (Thompson et al., 1998) has created new opportunities for selecting replacement animals. In the dairy industry, replacement calves are currently derived from either natural mating or (predominantly) artificial breeding (AB) using semen from highly selected bulls (Anon (a), 2000). Usually, selection on the dam side is limited because the AB semen is typically inseminated into whichever cows come on heat on any particular insemination day. The only selection that occurs on the dam side is when the farmer carries out a production cull near the end of the milking season.

The new reproduction technologies mean that potentially, replacement eggs for subsequent embryo production could be derived from only an elite proportion of the commercial dairy herd or even from the heifers or calves. Multiple egg removal from individual animals, and subsequent embryo production and pregnancy in surrogate dams would create opportunities for achieving greater rates of genetic gain (de Boer et al., 1994; Van Vleck, 1981).

As part of an assessment of these opportunities, the following modeling study was carried out to simulate and measure the potential size of the benefits that might arise from using the new technologies. The effects of these on herd breeding worth (BW), as defined by Harris et al., (1996), were compared with the status quo selection system over a 10-year period.

MATERIALS AND METHODS

A simulation model was developed using Visual Basic on an Excel spreadsheet. Data from a case study herd of 160 in-milk cows was used to predict the change in that herd’s BW over a 10-year period using the different strategies for selecting replacement heifers that might be possible with the new reproductive technologies.

The four strategies tested were:
1. a status quo mating strategy using Livestock Improvement Corporation’s ‘bull of the day’ AB service (Anon (b), 2000) with cows from the herd selected, effectively at random, as they came on heat until the farmer deems enough have been mated to generate the required number of replacements;
2. a new strategy where replacement heifers were generated from the AB ‘bull of the day’ and the top 25% of the milking herd;
3. same as (2) but where the females used for mating came entirely from the maiden heifers (rising 2-year-olds);
4. same as (2) but where females for mating came entirely from the rising 1-year-old calves.

Strategies (2), (3) and (4) assumed the necessary technologies were available to make them feasible. Assumptions in the models included the following:
• Progeny BW is very close to the average of the sire and dam BWs (Brumby, pers. com)
• The average BW of the ‘bull of the day’ in spring 2000 was $135 (Anon (b), 2000). Average Bull BW in each year was assumed to have a standard deviation (sd) of $7 based on the range in Anon (b) (2000)
• An average increment in bull BW of $5 units linear gain per year. This was slightly conservative compared to estimates of $6 elsewhere (Anon (a), 2000; Garrick & Lopez-Villalobos, 1998; Lopez-Villalobos & Garrick, 1997)
• Annual herd replacement rates of 15, 20 and 25% consisting of 5, 10 and 15% production culling respectively, of the lowest BW cows, and 10% random culling due to deaths, sick and empty cows. This compared with reported average replacement rates of 21.6% (Simmonds, 1998) and 18.2% (Anon (a), 2000) and ‘expected’ planned culling rates of 10% (Macmilliam et al., 1998). For simplicity, BW was used for production culling decisions in our model whereas, in
practice, most farmers use production worth (PW). This discrepancy was not considered serious as the correlation coefficient between BW and PW is approximately 0.75 (Harris pers. Comm.)

The 4 strategies were tested, in terms of herd BW change over a 10 year period, using a case study herd which, on a BW basis, lay within the top 10% of herds in New Zealand (Anon (a), 2000). The herd data were copied from the herd owner’s database programme (‘DairyWin 32’ – leased from LIC) into the model. A few minor manipulations were required to get the base herd data into a suitable format. Steps in the simulation of each strategy then included the following:

1. Determine counts, average BWs and standard deviations of cows, heifers and calves at the start of the year
2. Selection of random culls using random numbers
3. Selection of production culls by sorting the cows on BW
4. Creation of the next year’s calf crop by the average of the dam (or donor) BW and the bull BW, sampled within the standard deviation range described above
5. Aging of all stock by one year and creation of a next year herd list including heifers and calves
6. Calculation of counts and average BWs and standard deviations of retained animals for the start of the following year
7. Repeating the cycle for 10 years and summarizing the results.

A second case study herd was created by subtracting 30 BW units from every cow in the above herd. This new herd had an average BW which placed it in the bottom 10% of herds in New Zealand (Anon (a), 2000). Tests of statistical significance were carried out using analyses of variance (Genstat 5 Committee. 1993) on the results of the 20 simulations at year 10 but it is not appropriate to report them. This is because, with a simulation model, it is easy to keep running simulations until any difference is significant. Similarly, standard errors of means can be made arbitrarily small by simulating more samples. Instead, therefore, coefficients of variation associated with the model predictions are presented to give a measure of how much individual simulations varied from the mean predictions.

RESULTS AND DISCUSSION

A sample output of one of the selection strategies over time for one of the 20 runs of the simulations described above is shown in Figure 1. Here the low BW herd was subjected to selection Strategy (4) in which a 25% replacement rate was achieved by mating ‘bull of the day’ semen to calf embryos.

Figure 2 shows progress over time for the different selection strategies for the high BW herd again at a 25% replacement rate. The results show the extent of the genetic gain possible, over 10 years, with selection pressure (Strategy 4 vs Strategy 1 is the extreme comparison) or as the age of the egg donor decreased. Again, the coefficient of variation of the mean herd BWs was only 2%. Not shown, but worth noting was that herd age after 10 years was also affected by strategy. Strategies that produced the greatest BW gain resulted in the youngest herds. For example, in Figure 2, average herd age at year 10 was about 3.8 years for Strategy 1 and 3.7 years for Strategy 4. Selection of donor eggs from the top 25% of cows (Strategy 3) was very little different from selecting eggs from all the heifers –the same number of donor animals were involved in each case (Strategy 3, Figure 2).

The simulations showed genetic gain was greater for the herd starting from a lower base (Figure 3), especially when selection pressure was higher (Strategy 4). This is a logical outcome given that progeny BW is the average of
the dam and sire BW so that, other things being equal, genetic gains will always be greater for poorer herds. Figure 4 summarises all the above effects for year 10 and includes the effects of selection rate. It indicates that, for a herd owner contemplating use of these new reproductive technologies, greatest gains will be achieved for herds starting from a low base, by obtaining donor eggs from young animals (calves). Herds starting from higher initial BWs will still benefit but the gains will not be quite so large. This project has identified the likely average gains that could be made but variance was probably underestimated. Further research is required to accurately predict all the sources of variation that may occur.

ACKNOWLEDGEMENTS

The authors greatly appreciate feedback provided by peers, the use of the farm owner’s herd data, Simon Woodward and Neil Cox for assistance with spreadsheet and ‘Visual Basic’ matters and Neil Cox for statistical analyses and commentary. This project was kindly funded by Public Good Science Funds.

REFERENCES

CONCLUSIONS

Our models show that new reproductive technologies as described will increase the rate of gain of herd BW over a 10-year period. Gains are greatest for herds starting from a low BW base where producers are willing to choose high replacement rate systems with donor eggs selected from young animals (calves). Herds starting from higher initial BWs will still benefit but the gains will not be quite so large. This project has identified the likely average gains that could be made but variance was probably underestimated. Further research is required to accurately predict all the sources of variation that may occur.