New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

View All Proceedings Next Conference Join NZSAP

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Share — copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Tasmanian grass grub - a significant threat to pastoral farming in dryland regions

M.W.A. SLAY AND M.W. FISHER
AgResearch Poukawa Research Station, PO Box 8144, Havelock North, New Zealand

ABSTRACT
Tasmanian grass grub, first recorded in Canterbury in 1920, is now well established in several areas of New Zealand. The adult beetles fly in January and lay their eggs in the soil after mating. After hatching, the larvae live in the soil and construct vertical tunnels from which they emerge at night to feed on and denude pasture plants. The effects of this pest on pasture were estimated by measuring pasture with larval densities ranging from 21-574 m². Larval infestation significantly reduced pasture mass in a linear fashion by around 5% per 100 larvae. For example, at one site from July to September, pasture mass \(Y = -0.816X + 1852, R^+ = 0.3 \); where \(Y \) = pasture mass (kg DM per ha) and \(X \) = larvae per m². Losses in stock carrying capacities have been estimated to vary between 0.5 and 5 stock units per hectare depending on the farm carrying capacity and larval damage to pasture, resulting in losses of up to $315 per hectare.

Keywords: Tasmanian grass grub; pasture damage; production losses.

INTRODUCTION
Tasmanian grass grub (Acrossidius tasmaniae. Hope), native to southeastern Australia, was first recorded in Canterbury in 1920 (Kelsey, 1970). The current distribution (Figure 1) now encompasses areas in Canterbury, Marlborough, Taranaki, Hawke’s Bay and a wide area of the northern North Island (R.J. Townsend and B.E. Willoughby, pers. comm). Larvae are very similar in size and shape to the New Zealand grass grub (Costelytra zealandica), except for a darker almost black head and bluish-white body and they are generally more active when disturbed than native grass grub.

FIGURE 1: Present distribution of Tasmanian grass grub in New Zealand. The place names approximate the limits of the infestation.
numerous shelter belts then moved out to encompass whole paddocks. In hill country east of Waipukurau its rapid spread is considered to be due to ‘ridge hopping’ as beetles fly from ridge to ridge attracted to stock camps, enabling the pest to proliferate through the district quickly. Almost uniquely, the northerly and southerly slopes provide an ideal habitat for the survival of the pest, with beetles laying eggs in the moist southerly aspect and larvae migrating to the northerly aspect. Land disturbed by Tasmanian grass grub is susceptible to establishment of thistles, reducing pasture production and encouraging further weed and pest infestation establishment (M.W.A. Slay, unpublished observations).

Given the significant increase in area now occupied by the pest in Hawke’s Bay, and the damage sustained by pasture, this paper seeks to quantify the losses in pasture production from Tasmanian grass grub larvae and relate it to farm gross margins.

MATERIALS AND METHODS

Two insecticides were applied to a population of Tasmanian grass grub larvae (range 500-1275 larvae per m²) infestation on a site on a Maraekakaho farm. There were four replicates in a randomised block design with the following treatments: control (no insecticide), fenitrothion (1200 and 900 g/ha – Caterkill® 1000, Nufarm Ltd.) and alpha-cypermethrin (10, 15 and 20 g/ha – Fastac, 100EC – BASF NZ Ltd.). All insecticides were applied in 250 litres of water per hectare on 10 May 1996 to 40 m² plots. Larval density was re-assessed 28 days later (7 June) in 18, 10cm cores per plot. On July 25, pasture on the plots was trimmed to 3cm and fenced to exclude stock. Pasture mass was estimated from three, 45cm strips per plot on 16 September and the yield calculated and correlated with the pest densities. The data was analysed by regression analysis. The financial effects of Tasmanian grass grub infestation on farm production were estimated according to Garnham & Barlow (1993). The value of lost production was calculated as the current farm gross margin (GM; P. Tither, pers. comm.) x larval population (per m²) x 0.0005 (the coefficient of the relationship between Tasmanian grass grub density and pasture loss). Two larval populations (300 and 700 larvae per m²) and two farm businesses were compared (a sheep and a deer farming enterprise).

RESULTS

Insecticide application produced a range (21-574 per m²) of grub densities and resulted in pasture recovery and increased growth within six days of treatment. Pasture mass decreased as grub density increased (Figure 2) such that $Y = -0.82X + 1852 \ R^2 = 0.30; \ df\ 22; \ P = 0.01$ where $X = \text{larvae per m}^2$, $Y = \text{pasture mass (kg DM per ha)}$. This relationship indicated that for every 100 larvae, there was a loss of 82 kg DM per ha or about a 5% (range 4.4-5.7%) loss in pasture per 100 larvae. Thus 5% was used as the coefficient in the calculation of the production losses.

Given larval populations of 300 and 700 per m² for the sheep and beef hill country farm business and a gross margin of $420 per ha, then the estimated production loss due to Tasmanian grass grub would be $63 and $147 per ha respectively. Since only 8% of the farm was affected by an average of 300 larvae per m², the net loss was $2,268. Similarly, for the deer farm with a gross margin of $900,
the losses would be $135 and $315 per ha respectively for 300 and 700 larvae per m² and as 27% of the farm was affected by an average of 700 larvae per m², the net loss was $25,515. This level of infestation significantly impacts on gross margins.

DISCUSSION

This study suggests that Tasmanian grass grub affected pasture production with an estimated loss of 5% pasture dry matter production for every 100 grubs present in the soil from the onset of damage in March/April to November. Furthermore, pasture damage may result in potential losses in farm production of between $62-315, depending upon the level of infestation and the farm enterprise. A recent informal survey of eight Hawke’s Bay farms with Tasmanian grass grub infestation, suggested between 8 and 33% of hill and flat country, respectively, was moderately to severely affected (M.W.A. Slay, unpublished data). On some farms with a uniform soil type that favour Tasmanian grass grub, >70% of the farm can be under attack from moderate to severe densities of Tasmanian grass grub, effectively halving the stock carrying capacities between April and October, the critical pasture growth period in Hawke’s Bay. Given that this insect pest is now well established in dryland regions, and its distribution appears to be increasing in the cooler/wetter southerly area of Hawke’s Bay region, it poses a serious threat to livestock farming.

While these effects are significant, it is important to acknowledge that the results have been produced at only one site, and at one time of the year. While similar losses in pasture production and stock carrying capacity have been observed through the Hawke’s Bay, these losses may vary throughout the year. For example, an average infestation of 400 grubs per m² may result in a 20% loss in pasture production in September, but only an 8% loss in January as pastures recover during spring (B.E. Willoughby and M.W.A. Slay, unpublished data). Similarly, the technique of using insecticides to induce a range of grub densities, while having the advantage of keeping the study at a single site, may have affected pasture production independently of grub density or may fully reflect the variation in natural populations. Nevertheless, the relationship between grub density and pasture production does provide a simple predictive equation based on the relationship between pest density, % pasture loss and the farm/paddock gross margin, albeit based on studies of the control of grass grub and porina caterpillar (Barlow, 1985; Van Toor & Dodds, 1994).

Given the variation in pasture loss (Figure 2) and therefore farm production, with any given population of larvae, these results merely provide an estimate upon which individual farmers can begin to assess their management options. There are other factors that may require inclusion, such as the beneficial effects of Tasmanian grass grubs tilling the soil, and differences in the tolerances of pasture species.

In conclusion, Tasmanian grass grub is a severe threat to livestock farming on light soils and in dryland regions. Whilst reasonable levels of control can be achieved with insecticides, the most appropriate means and optimum times for managing Tasmanian grass grub have yet to be fully determined. Those affected will need to decide on control options to avoid the losses in productivity associated with the exceptionally high initial larval densities in early autumn, damage from which will become apparent in late autumn and winter.

ACKNOWLEDGEMENTS

The Agricultural and Marketing and Research Development Trust and Meat New Zealand are thanked for their generous support of parts of this study. We thank Nigel Barlow, Bruce Willoughby and Richard Townsend for their continued valuable assistance and support. Finally, we are indebted to Derek Wedd on whose property the study was situated, for his interest and support.

REFERENCES

