New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

- **Share**— copy and redistribute the material in any medium or format

Under the following terms:

- **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** — You may not use the material for commercial purposes.
- **NoDerivatives** — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Effect of a long acting injectable Vitamin B$_{12}$ on the Vitamin B$_{12}$ status of the suckling lamb

N.D. GRACE
AgResearch Grasslands, Private Bag 11008, Palmerston North

ABSTRACT
Treatment of lambs with a long acting microencapsulated injection of 3 mg and 6 mg Vitamin B$_{12}$ at 3 to 4 weeks of age, at docking, will increase and maintain their Vitamin B$_{12}$ status for at least 120 days. This new product has the advantage over intraruminal Co bullets which can only be administered to 10 to 12 week old lambs with a functional reticulorumen while the injectable water soluble Vitamin B$_{12}$ is only effective for about 4 weeks and a Co drench is effective for about 10 days.

Keywords: sheep; Co deficiency; long acting Vitamin B$_{12}$.

INTRODUCTION
Cobalt (Co) deficiency is an important problem in New Zealand livestock, particularly in sheep (Grace 1994). The young lamb is most sensitive to Co deficiency and the synthesis of Vitamin B$_{12}$ by the micro-organism in the reticulorumen is dependent on the Co intake. In sheep grazing pastures with Co concentrations of < 0.08 mg/kg DM the amount of Vitamin B$_{12}$ synthesised and absorbed is inadequate to meet the Vitamin B$_{12}$ requirements of young sheep. As Vitamin B$_{12}$ is essential for the energy and protein metabolism of ruminants Co deficiency therefore has a marked effect on growth (Rice et al., 1989; Kennedy et al., 1992).

An annual spring topdressing with Co at the rate of 60 g/ha (e.g. 350 g CoSO$_4$·0.5H$_2$O/ha) will increase herbage Co content 5 to 8-fold for 6 to 8 weeks before it decreases to baseline concentrations during the next 6 to 10 months (Sherrell 1990). This approach is very effective on the North Island pumice soils but it is less effective on some other soils, for example in Southland, where high soil Mn concentrations can interfere with the plant Co uptake (Metherell 1989).

Alternative supplementation strategies include the intraruminal Co bullet, which if not regurgitated, will increase and maintain Vitamin B$_{12}$ status of sheep and cattle (Judson et al., 1995). These bullets cannot be given to lambs younger than 10 weeks because the animals are too small and they do not as yet have a functional reticulorumen capable of synthesising Vitamin B$_{12}$ from elemental Co. The water soluble injectable Vitamin B$_{12}$ is only effective for about 24 days (Grace et al., 1998) while a Co drench is effective for about 10 days (Field et al., 1988).

AgResearch has developed a new, much longer acting injectable Vitamin B$_{12}$ microencapsulated in a copolymer of organic acids. This product is administered by subcutaneous injection into the anterior neck region and has been shown to increase and maintain serum and liver Vitamin B$_{12}$ concentrations in weaned lambs (Grace and Lewis 1999) and ewes (Grace 1999 unpublished data) for 250 days.

In the present study, the efficacy of this new animal remedy to increase and maintain the Vitamin B$_{12}$ status of 3 to 4 week old lambs was investigated because lambs, even though they are born to ewes with a high Vitamin B$_{12}$ status (i.e. serum Vitamin B$_{12}$ of > 1000 pmol/L), their liver Vitamin B$_{12}$ stores will become depleted by 4 weeks of age.

MATERIALS AND METHODS
Animals and Design
The study was carried out on the AgResearch Aorangi Research Farm, near Palmerston North where a marginal Co deficiency in lambs occurs. Soil type on the farm is Te Arakura sandy loam. Twenty one week old Romney Suffolk cross lambs aged 3 to 4 weeks were randomly distributed among 3 groups of 7 animals each. Group 1 were untreated controls. Group 2 and Group 3 were injected subcutaneously with either 3 or 6 mg respectively of the microencapsulated Vitamin B$_{12}$, carried in 1 ml peanut oil. Details of the injection protocol have been described (Grace and Lewis 1999). Briefly the Vitamin B$_{12}$ is encapsulated in a copolymer of acids which are slowly hydrolysed thereby controlling the release of Vitamin B$_{12}$ for up to 8 months. All lambs and their dams were grazed on pasture as a single mob until weaning at 18 weeks of age.

Collection of samples
Blood was collected for serum Vitamin B$_{12}$ determinations just prior to treatment and again at 35, 82 and 126 days after injection. Pasture herbage samples were collected at about 4-weekly intervals for Co determinations. The pasture was not washed to remove the adhering soil as unwashed pasture reflects what was ingested by the sheep. The lambs were weighed at about 4-weekly intervals.

Analytical methods
Serum Vitamin B$_{12}$ concentrations were measured by the Becton Dickinson radioassay method (Millar and Albyt 1984). Pasture Co was measured by graphite furnace atomic absorption spectroscopy (Jago et al., 1971).

Statistics
Differences between treatments were determined by analysis of variance of repeated measures over time using the procedures of the Statistical Analysis System (SAS), 1987.
RESULTS

Pasture Co concentrations ranged from 0.07 to 0.15 mg Co/kg DM with lowest values in November. There were no treatment effects on lamb growth rate, and the mean (± SE) weight at weaning was 29.7 ± 1.08 kg. Serum Vitamin B₁₂ concentrations from day 1 through day 126 are shown in Figure 1.

FIGURE 1: Effect of a long acting injectable Vitamin B₁₂ on the Vitamin B₁₂ status of the suckling lamb. Control (-----), 3 mg Vitamin B₁₂ (- - - - -) and 6 mg Vitamin B₁₂ (______). Vertical bars represent standard error of the mean.

Serum Vitamin B₁₂ concentrations of the untreated lambs were lowest (383 pmol/l) at the start of the study, slightly higher (590 pmol/l) at day 35, and then gradually decreased to day 126 (407 pmol/l). The treated lambs show a marked increase in serum Vitamin B₁₂ concentrations (> 2500 pmol/L) to day 35 which then gradually declined to day 126. At day 126 serum concentrations of the 3 mg and 6 mg Vitamin B₁₂ treated lambs were still significantly greater from the controls (P< 0.05 and P<0.01 respectively).

No tissue reaction was observed at the site of the injection.

DISCUSSION

Changes in serum and liver Vitamin B₁₂ concentrations were used to assess the Vitamin B₁₂ status of young sheep. Growth response to Co or Vitamin B₁₂ supplementation occur in lambs when serum and liver Vitamin B₁₂ concentrations are < 500 pmol/l and < 375 nmole/kg fresh tissue, respectively (Clark et al., 1989). The lower the Vitamin B₁₂ status of the lamb then the greater will be the growth response to the Co or Vitamin B₁₂ supplementation. Increased Co intakes result in elevated serum and liver Vitamin B₁₂ concentrations (Somers and Gawthorne 1969). The observed increase and then the decrease in serum Vitamin B₁₂ concentrations of the untreated lambs reflects the changes in their Co intakes over the study period. While the Co content of pastures changes with season, botanical composition for example the clovers are higher in Co when compared to grasses, and the amounts of soil ingested, the influences of these factors on the intake of Co and the Vitamin B₁₂ status of the lamb are difficult to measure accurately (Grace 1994).

The efficacy of the new long acting injectable Vitamin B₁₂ was assessed in terms of changes in serum Vitamin B₁₂ concentration (Clark et al., 1989). The 3 and 6 mg Vitamin B₁₂ doses increased and maintained serum Vitamin B₁₂ concentrations when compared to untreated animals for at least 126 days, after the suckling lambs were injected 3 to 4 weeks of age at docking.

The Vitamin B₁₂ status of the ewe influences that of the lamb by supplying Vitamin B₁₂ to the foetal liver as well as to the milk (Quirk and Norton 1987; Fisher and MacPherson 1991). As the liver Vitamin B₁₂ stores of suckling lambs are depleted in less than 40 days after birth and their dependence on milk for nutrients decreases, lambs in flocks grazing Co deficient pastures can become Co deficient in early life (Quirk and Norton 1987; Grace 1999 un-published). Clearly the onset of Co deficiency is hastened in young lambs if Vitamin B₁₂ status of the ewe is low that is their serum Vitamin B₁₂ concentrations are < 500 pmol/L (Quirk and Norton 1987).

To ensure that lambs reach suitable liveweights for slaughter within 16 to 20 weeks, growth rates of at least 220 g/day must be maintained. In Co deficient flocks it is essential that the decreasing or low Vitamin B₁₂ status of lambs is increased early in life to ensure good growth rates and weaning weights. The new long acting Vitamin B₁₂ formulation developed by AgResearch can be easily injected at docking time and will remain effective until weaning and longer because the same formulations were shown to increase and maintain serum and liver Vitamin B₁₂ concentrations in weaned lambs for 250 days (Grace and Lewis 1999).

ACKNOWLEDGEMENTS

Thanks to Angus Petersen for technical assistance.

REFERENCES

