New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

 Share— copy and redistribute the material in any medium or format

Under the following terms:

 Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

 NonCommercial — You may not use the material for commercial purposes.

 NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
A review of forage grazing systems to produce venison according to market signals

T.N. BARRY, P.R. WILSON AND P.D. KEMP

College of Sciences, Massey University, Palmerston North

ABSTRACT

Grazing systems are described for producing venison carcasses weighing 50-65 kg (92-120 kg liveweight) in the spring by one ear of age (30 November), using red and hybrid (0.25 elk: 0.75 red) deer stags. Grazing perennial ryegrass/white clover pasture at 10 cm surface height during autumn, winter and spring resulted in 73% of young stags attaining the desired slaughter target, but variation between years was large (range 25-100%), with a contributing cause being variation between years in winter growth rate. When red clover and chicory were grazed during autumn and spring, with pasture grazing during winter, the proportion of young stags attaining the desired slaughter target was consistently increased to 90-100% and mean carcass weights were increased by 11 & 17% respectively. Largest responses in deer growth to red clover (26%) and chicory (47%) over perennial ryegrass-based pastures were seen during autumn. Both voluntary feed intake (VFI) and digestibility of the diet selected were higher for deer grazing chicory and red clover than perennial ryegrass-based pasture, with the largest effects seen during summer and autumn, when perennial ryegrass was of lowest nutritive value. In indoor studies, both the rates of ruminal degradation and outflow of chicory were greater than for perennial ryegrass, with similar results found for red clover. It was concluded that the faster breakdown and clearance of red clover and chicory from the rumen than perennial ryegrass explained their higher digestibility and VFI by grazing deer. Management of red clover and chicory to increase persistence on commercial deer farms and grazing systems to support year round supply of venison in a branded market strategy are also discussed. For successful venison production by 12 months of age, target growth rates during winter of 100g/day for red deer and 150g/day for hybrids are suggested.

Keywords: Grazing systems, Deer, Forages, Nutritive Value

INTRODUCTION

The farmed deer population in New Zealand (NZ) has now risen to 1.8 million animals, with the number of deer estimated to be slaughtered in 1999 being 0.45 million (Game Industry Board (GIB) personal communication). Like sheep and cattle production, farmed deer production in NZ occurs largely from the 12 month grazing of perennial ryegrass: white clover pastures, supplemented with hay, silage and cereal grains at times of low pasture availability and/or low pasture nutritive value (Barry & Wilson 1994).

There are three major market signals for venison production in NZ. The first is higher prices/kg for carcasses in the range 50-65 kg (92-120 kg liveweight), the second is an additional premium if these can be produced in the spring months (Aug-Nov) and the third is a price penalty for over fatness, often associated with heavier carcasses. The first premium is to attract carcasses of preferred size for the restaurant trade, whilst the second is to attract carcasses for the seasonal N. Hemisphere chilled venison market, which is mainly for Europe and is dominated by Germany. The third signal is to encourage production of tender low fat venison, to enhance the perception of venison as a healthy red meat. Some 98% of NZ farm produced venison is exported. It is most economic if carcasses to this specification can be produced by one year of age. The objective of this paper is to review the development of grazing systems to produce carcasses to meet the above criteria. In all experiments one year of age was defined by slaughter on 30 November or shortly thereafter.

GRASS-BASED PASTURES

Early research developed grazing systems based on perennial ryegrass/white clover and annual ryegrass/white clover pastures (Ataja et al., 1992; Table 1) and showed lower growth rates in set stocked young red deer grazed at 5 cm surface height in the spring months. However, even when grazing 10 cm grass-based pastures during winter and spring, only 42-50% of young stags attained the desired slaughter criteria. A follow up investigation using rotational grazing (initial height 10 cm; final height 8 cm) produced similar results, with 41 and 60% of young red stags grazing perennial ryegrass/white clover and annual ryegrass/white clover pastures during winter and spring attaining 92 kg liveweight by 12 months of age (Ataja et al., 1992). This compares with 0 – 42% (mean 8%) of young stags attaining the same criteria on commercial deer farms (Audige’ 1995). Hamilton et al., (1995) obtained similar results in the UK with weaned red deer grazing N fertilised grass-based pastures during spring; growth rates were lowest at 4 cm surface height, maximal at 8-10 cm and intermediate at 6 cm.

Based upon the above results, it was evident that inputs of higher nutritive value forages were needed if most stags were to attain 92 kg liveweight (50 kg carcass) by one year of age.
Table 1: Growth of young red deer during their first winter (W) and spring (S) when grazing ryegrass-based pastures maintained at 5 and 10 cm sward surface heights

<table>
<thead>
<tr>
<th>Herbage Mass</th>
<th>Ryegrass</th>
<th>10 cm</th>
<th></th>
<th>5 cm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>kg DM/ha</td>
<td>Perennial</td>
<td>Annual</td>
<td></td>
<td>Perennial</td>
<td>Annual</td>
</tr>
<tr>
<td>LWG (g/d) W</td>
<td>1840</td>
<td>1694</td>
<td>1256</td>
<td>1148</td>
<td></td>
</tr>
<tr>
<td>S 2251</td>
<td>2022</td>
<td>1731</td>
<td>1690</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stands attaining 92 kg LW (%)</td>
<td>42</td>
<td>50</td>
<td>0</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

From Ataja et al., 1992. Initial liveweight was 59.4 kg.

RED CLOVER AND CHICORY AS SPECIALIST FORAGES FOR VENISON PRODUCTION

Red clover and chicory were selected for evaluation with deer because both have good summer/autumn growth and therefore better match the feed requirements of deer than do perennial ryegrass/white clover pastures, both have deep tap roots to resist summer drought and both are of high nutritive value and are highly preferred by deer (Hunt & Hay, 1990). In the experiments reviewed here, deer grazing these forages were compared with similar deer grazing perennial ryegrass/white clover pasture, when both were grazed under optimum conditions as described below. Rotational grazing was used in all instances, with rotation length being 3-5 weeks.

Deer were offered all three forages at the same DM allowance/animal in each season. These corresponded to mean pre- and post-grazing forage masses of 3,500 & 2,100 kg DM/ha for chicory and 2655 and 1770 kg DM/ha for perennial ryegrass/white clover pasture. This corresponded to red clover and chicory being grazed from an initial height of approx. 30 cm to a final height of approx. 10 cm, with the corresponding values for perennial ryegrass/white clover pasture being 10 cm and 8cm. Further details of forage management are given by Barry (1998) and Barry et al., (1998).

The experiments were divided into a lactation phase (January & February) and a post weaning to slaughter phase (early March to 30 November of the same year). Because red clover and chicory are dormant during winter, animals allocated to these were grazed on pasture during winter. Red deer and hybrid (0.25 elk : 0.75 red) were used as specified in each experiment. All were regularly drenched with anthelmintic from weaning (end Fed) to the end of winter.

During lactation, growth of deer calves grazing perennial ryegrass/white clover pasture was 331.399g/d (Table 2). Grazing red clover, chicory or Lotus corniculatus further increased calf growth by approx. 20%, with the response being similar for all forages.

From weaning to slaughter, growth of young deer grazing perennial ryegrass/white clover pasture was approx. 200g/day during autumn and 300 g/day during spring (Tables 3&4). Grazing red clover increased growth by an average of 26% during autumn and 14% during spring. Corresponding increases for chicory were 47% in autumn and 33% in spring.

Table 2: Growth of deer calves during lactation (g/day) in summer (January & February). Values in brackets are % increase relative to grazing perennial ryegrass/white clover pasture.

<table>
<thead>
<tr>
<th>Author</th>
<th>Initial Liveweight (kg)</th>
<th>Perennial Ryegrass/White clover pasture</th>
<th>Red Clover</th>
<th>Chicory</th>
<th>Lotus corniculatus</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niezen et al., (1993)</td>
<td>235</td>
<td>333</td>
<td>433 (30)</td>
<td>15.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kusmartono et al., (1996)</td>
<td>30.4</td>
<td>331</td>
<td>410 (24)</td>
<td>385 (16)</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>Adu et al., (1997)</td>
<td>28.3</td>
<td>399</td>
<td>485 (22)</td>
<td>12.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean % increase</td>
<td>(27)</td>
<td>(16)</td>
<td>(22)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calves all red deer.
1Half calves were red deer & half were 0.25 elk : 0.75 red deer hybrid.

Table 3: Growth of red stags (g/d) from weaning to one year of age on red clover, compared with perennial ryegrass/white clover pasture. Values in brackets are % increases relative to grazing perennial ryegrass/white clover pasture.

<table>
<thead>
<tr>
<th>Author</th>
<th>Initial Liveweight (kg)</th>
<th>Perennial</th>
<th>Red</th>
<th>Chicory</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semiadi et al., (1993)</td>
<td>54</td>
<td>207</td>
<td>237 (14)</td>
<td>13.7</td>
<td></td>
</tr>
<tr>
<td>Soetrisno et al., (1994)</td>
<td>106</td>
<td>95</td>
<td>101 (4)</td>
<td>6.7</td>
<td></td>
</tr>
<tr>
<td>Mean % increase</td>
<td>(26)</td>
<td>(94)</td>
<td>(8.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semiadi et al., (1993)</td>
<td>341</td>
<td>354 (4)</td>
<td>16.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soetrisno et al., (1994)</td>
<td>281</td>
<td>346 (23)</td>
<td>13.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean % increase</td>
<td>(14)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1All groups joined together and grazed on perennial ryegrass/white clover pasture during winter.

Table 4: Growth of weaner red (R) and hybrid (H) stags (g/d) to one year of age on chicory, compared with perennial ryegrass/white clover pasture. Values in brackets are % increases relative to grazing perennial ryegrass/white clover pasture.

<table>
<thead>
<tr>
<th>Author</th>
<th>Perennial</th>
<th>Chicory</th>
<th>SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kusmartono et al., (1996)</td>
<td>178</td>
<td>203</td>
<td>246 (38)</td>
</tr>
<tr>
<td>Min et al., (1997)</td>
<td>152</td>
<td>199</td>
<td>235 (55)</td>
</tr>
<tr>
<td>Mean % increase</td>
<td>(47)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kusmartono et al., (1996)</td>
<td>171</td>
<td>146</td>
<td>271 (36)</td>
</tr>
<tr>
<td>Min et al., (1997)</td>
<td>72</td>
<td>89</td>
<td>86 (8)</td>
</tr>
<tr>
<td>Mean % increase</td>
<td>(47)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Initial liveweight 50.4 and 47.4 kg for red and hybrid stags respectively.
2Initial liveweight 45.7 and 51.1 kg for red and hybrid stags respectively.
3All groups joined together and grazed on perennial ryegrass/white clover pasture during winter.
10% in spring (Table 4). During winter, when the groups were joined and grazed on pasture, average growth rate over the four experiments was 110g/day, but this varied from a minimum of 75g/day in one year to a maximum of 160g/day in another year.

The proportion of young red stags grazing perennial ryegrass/white clover pasture which reached 92 kg liveweight (50 kg carcass) by one year of age averaged 73%, but showed great variation between years (Table 5). One of the main causes of this variation was low winter animal growth rates in some years, associated with long periods of wet weather. When red clover or chicory were grazed this was consistently increased to 90-100%, with little variation between years. Relative to deer grazing perennial ryegrass/white clover pastures, grazing red clover increased carcass weight by an average of 11% whilst grazing chicory increased carcass weight by 17%.

Carcass weight responses were particularly high for hybrid stags grazing chicory. Grazing red clover or chicory did not affect carcass fatness, as measured indirectly by GR.

Table 5: Percentage of red (R) and hybrid (H) stags reaching 92 kg liveweight (50 kg carcass) by one year of age when grazing red clover, chicory or perennial ryegrass/white clover pasture.

<table>
<thead>
<tr>
<th>Author</th>
<th>Perennial ryegrass/white clover pasture</th>
<th>Red Clover</th>
<th>Chicory</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>

Author

- Semiadi *et al.*, (1993)
- Soetrisno *et al.*, (1994)
- Kusmartono *et al.*, (1996)
- Min *et al.*, (1997)

Mean Values 73 82 100 90 90

Mean % increase (11) (17)

NUTRITIONAL REASONS FOR DIFFERENCES BETWEEN FORAGES

The chemical composition of vegetative perennial ryegrass, red clover and chicory is shown in Table 7. Chicory contains a higher concentration of ash than either perennial ryegrass or red clover. Relative to perennial ryegrass, both red clover and chicory contain higher concentrations of readily fermentable carbohydrate (soluble sugars and pectin) and lower concentrations of structural carbohydrate (cellulose and hemicellulose). Hence the ratio readily fermentable carbohydrate: structural carbohydrate is higher for red clover and chicory than for perennial ryegrass. The consequences of this are that both rate of ruminal particle breakdown and rate of rumen outflow are faster for chicory than for perennial ryegrass (Table 8), whilst ruminating time is much lower for chicory. As a result of this, both apparent digestibility (Table 8) and metabolisable energy (ME) concentration (Table 7) are considerably greater for chicory than for perennial ryegrass. The higher ash content of chicory probably also contributes to the very high fractional outflow rate (FOR) of rumen liquid in deer fed this forage. Similar measurements of digestion kinetics show that red clover is also broken down faster in the rumen than perennial ryegrass (Freudenberger *et al.*, 1994).

In grazing studies, both voluntary feed intake (VFI) and apparent digestibility of the diet selected have been consistently higher for young deer grazing red clover and chicory than for deer grazing perennial ryegrass/white clover pasture (Semiadi *et al.*, 1993; Soetrisno *et al.*, 1994; Kusmartono *et al.*, 1996; Min *et al.*, 1997). These differences have generally been largest at the time when the nutritive value of perennial ryegrass/white clover pasture is lowest (summer) and least when the nutritive value of pasture is highest (spring).

Kusmartono *et al.*, (1996) found that VFI of deer grazing chicory was 55%, 25% and 15% greater than that of deer grazing pasture during summer, autumn and spring respectively. These increases in VFI and apparent digestibility can be explained by the faster clearance of red clover and chicory from the rumen (Table 8).

Table 6: Carcass weight (kg) of red (R) and hybrid (H) stags at one year of age from grazing red clover, chicory or perennial ryegrass/white clover pasture. Values in brackets are % increases relative to grazing perennial ryegrass/white clover pasture.

<table>
<thead>
<tr>
<th>Author</th>
<th>Perennial ryegrass/white clover pasture</th>
<th>Red</th>
<th>Chicory</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Author

- Semiadi *et al.*, (1993)
- Soetrisno *et al.*, (1994)
- Kusmartono *et al.*, (1996)
- Min *et al.*, (1997)

Mean Values 56.6 57.0 63.2 (12) 73.0 (28)

Mean % increase (11) (17)

CONCLUSIONS

By increasing grazing height of perennial ryegrass/white clover pasture to 10 cm, during autumn, winter and spring, these experiments have shown that the growth of young deer can be increased, such that an average of 73% of animals reach the target of liveweight of 92 kg (50 kg carcass) by one year of age. This is a considerable improvement over the figure of 42% found in the best commercial farms recorded by Audige’ (1995). However the mean percentage varied between years (range 25-100%) in the Massey University studies and one of the causes identifi
ryegrass/white clover pasture.

than using the normal management system for perennial aged as "special purpose forages" as described above, rather of a deer farm be sown in these crops and that they be man-
dormant; we therefore recommend that no more than 20%
spread to fill gaps as chicory plant density decreases with
recommended that chicory be sown as a mixture with white
red deer.

critical particle size (1mm or less) to allow passage from the rumen of red deer.

during prolonged wet weather (Li

important to these specialist forages being adopted by
stags attaining the target liveweight to 90-100% and increas-
venison production through increasing the proportion of
pastures only, winter growth rate needs to be at least 100g/
weaner deer. For successful venison production from grazed
fied was variation between years in winter growth rate of
weaner deer. For successful venison production from grazed
pasts only, winter growth rate needs to be at least 100g/
day and preferably 150g/day if hybrids are used.. To en-
sure a consistent supply of top quality carcasses to venison
processors, it seems that some input of higher nutritive value
values will be required. This could be achieved from either
strategic supplementation with cereal grains or by the use
of high nutritive value specialist forages as reviewed in this
paper.

Inputs of red clover nd chicory consistently increased
venison production through increasing the proportion of
stags attaining the target liveweight to 90-100% and increasing
carcass weight by 11-17%. With such superior feeding
value, the key to these specialist forages being adopted by
deer farmers is devising grazing management practices
which will result in maximum persistence of these plants
with 4-6 years being the goal. Key recommendations are
rotational grazing at 3-5 week intervals, with initial and fi-
nal heights of 30 and 10 cm, if necessarily mechanically
peing reproductive growth during summer and not grazing
during prolonged wet weather (Li et al., 1997). It is also
recommended that chicory be sown as a mixture with white
clover ; the legume will fix atmospheric nitrogen and also
spread to fill gaps as chicory plant density decreases with
age, so reducing invasion by weeds.

The downside of these crops is that they are winter
dormant; we therefore recommend that no more than 20%
of a deer farm be sown in these crops and that they be man-
aged as “special purpose forages” as described above, rather
than using the normal management system for perennial
ryegrass/white clover pasture.

Another potential advantage of chicory may be that
use of anthelmintic drenches can be reducing during au-
tumn without producing sub-clinical parasitism and with-
out depressing weaner deer growth rate, as shown in the
one study of this type conducted to date with deer (Hoskin
et al 1999). Scales et al., (1995) similarly found low para-
site burdens in lambs grazing chicory. These effects are
probably due to the different plant morphology of chicory
compared to perennial ryegrass, with reduced numbers of
infective larvae getting into the stratum that is eaten by graz-
ing animals (Moss & Vlassoff 1993).

These studies have shown that hybrid (0.25 elk : 0.75
red) deer show greater responses on chicory than pure red
deer, suggesting that the genetic potential of the hybrids for
superior growth can best be expressed when grazing high
nutritive value forages.

The grazing systems described here were designed to
produce carcasses for the chilled venison trade, which is a
commodity market and is seasonal, to supply venison for
Germany during their late autumn and Xmas. Strategies of
the NZGIB are to market venison as a branded top quality
product, which is available in markets all year round. Ex-
amples of this are CERVENA™ for the N. American mar-
et and a similar product to be launched on the European
market in late 1999. As demand for these branded venison
products grows, there will be a need to develop grazing
systems, which will produce 50-65 kg carcasses in all
months of the year. Collectively, these data show a clear
future for the input of specialist forages into efficient veni-
son productions systems under grazing.

ACKNOWLEDGEMENTS

Support of major sponsors Ravensdown Corpora-
tion, Wrightson Seeds, Wiremakers, Mitchpine Products,
the C.Alma Baker Trust and Massey University Research
Fund are gratefuly acknowledged. Minor sponsors including
AgVax Developments, Aspiring Veterinary Services,
Bayer Animal Health Division, Farmers Mutual Group,
Merke, Sharp & Dohme, Venison Packers & Petrochem also
gave valuable support. Mr G.S. Purchas gave valued tech-
nical assistance, Mr T.G. Harvey & Mr W.C.L. Howell are
thanked for management advice and Nutrition Laboratory
staff, Department of Animal Science, are thanked for per-
forming analytical work.

REFERENCES

Adu, E.K., Barry, T.N.; Wilson, P.R.; Kemp, P.D. (1997): Evaluation of
Lotus corniculatus for increasing pre-weaning growth in red and
hybrid deer. *Journal of Agricultural Science, Cambridge* 131:
197-204.

Ataja, A.M.; Wilson, P.R.; Barry, T.N.; Hodgson, J.; Hoskinson, R.M.;
from red deer (*Cervus elaphus*) as affected by grazing perennial
or annual ryegrass pastures, pasture surface height and immuni-
ization against melatonin. *Journal of Agricultural Science, Cam-
bridge* 118: 353-369.

Thesis. Massey University, New Zealand.

Table 8: Kinetics of feed breakdown and outflow from the rumen in
dead red fed chicory and perennial ryegrass under indoor conditions.

<table>
<thead>
<tr>
<th>Composition</th>
<th>Perennial ryegrass</th>
<th>Chicory</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter (g/kg)</td>
<td>247</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>Total N (g/kg DM)</td>
<td>30.4</td>
<td>26.9</td>
<td></td>
</tr>
<tr>
<td>Ash (g/kg DM)</td>
<td>102</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Apparent digestibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic matter</td>
<td>0.744</td>
<td>0.820</td>
<td>0.0311</td>
</tr>
<tr>
<td>NDF</td>
<td>0.755</td>
<td>0.679</td>
<td>0.0231</td>
</tr>
<tr>
<td>Rumen pH</td>
<td>6.44</td>
<td>5.63</td>
<td></td>
</tr>
<tr>
<td>Particle breakdown efficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td>0.37</td>
<td>0.27</td>
<td>0.038</td>
</tr>
<tr>
<td>Ruminating</td>
<td>0.47</td>
<td>0.65</td>
<td>0.038</td>
</tr>
<tr>
<td>Chewing time (min/24 h):</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating</td>
<td>221</td>
<td>209</td>
<td>49.2</td>
</tr>
<tr>
<td>Ruminating</td>
<td>257</td>
<td>30</td>
<td>54.6</td>
</tr>
<tr>
<td>Rumen fractional outflow rate (%/h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>13.6</td>
<td>18.9</td>
<td>2.18</td>
</tr>
<tr>
<td>Particulate (Lignin)</td>
<td>2.78</td>
<td>4.08</td>
<td>0.551</td>
</tr>
<tr>
<td>Particulate (ADF)</td>
<td>2.02</td>
<td>4.30</td>
<td>0.506</td>
</tr>
<tr>
<td>Rumen mean retention time (h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>8.9</td>
<td>6.4</td>
<td>0.01</td>
</tr>
<tr>
<td>Particulate (Lignin)</td>
<td>49.0</td>
<td>37.7</td>
<td>9.61</td>
</tr>
<tr>
<td>Particulate (ADF)</td>
<td>53.5</td>
<td>22.9</td>
<td>4.66</td>
</tr>
</tbody>
</table>

From Dryden et al., (1995); Kusmartono et al., (1996a, 1996b, 1997).

1 Efficiency of chewing during eating in breaking down particles to the
critical particle size (1 mm) to allow passage from the rumen of red deer.

2 Efficiency of the rumination process in breaking down particles to the
critical particle size (1mm or less) to allow passage from the rumen of red
deer.

