New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

- **Share**— copy and redistribute the material in any medium or format

Under the following terms:

- **Attribution** — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- **NonCommercial** — You may not use the material for commercial purposes.
- **NoDerivatives** — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
BRIEF COMMUNICATION

Effects of milk stasis and feed withdrawal on capillary exchange capacity in the goat mammary gland

V.C. FARR, S.R. DAVIS AND C.G. PROSSER

Dairy Science Group, AgResearch, Ruakura Agricultural Research Centre, Private Bag 3123, Hamilton, New Zealand.

Keywords: capillary exchange capacity; mammary gland; milk stasis; feed withdrawal.

The lactating mammary gland is critically dependent upon the provision of nutrients and hormonal stimuli from the blood to sustain milk synthesis. This is reflected in the high correlation between mammary arterial blood flow (F) and milk yield (MY). During established lactation in goats, frequent milking with oxytocin results in a higher blood flow to the mammary gland (Prosser and Davis, 1992). Conversely, MY and F decrease during both milk stasis (Stelwagen et al. 1994) and feed withdrawal (Davis and Collier, 1985). It has yet to be determined whether these decreases in the blood supply cause the decreases in MY or are as a result of a decrease in demand for blood by the secretory tissue.

The purpose of the present study was to investigate the behaviour of the microvasculature in the mammary gland of lactating goats following milk stasis (MS) and feed withdrawal (FW). The capillary exchange capacity within the mammary gland was measured using the dual indicator dilution technique. This study was undertaken with the approval of the Ruakura Animal Ethics Committee (Hamilton, New Zealand).

Four lactating Saanen goats were surgically prepared with an ultrasonic blood flow probe (Transonics Systems Inc., Ithaca, NY, USA) around the pudic artery and an indwelling arterial catheter. Surgery was performed at least one week before experimentation. The mammary vein was catheterised the day before measurements were made. Treatments consisted of: control (C), twice-daily milked animals, fed on hay (ad libitum) and concentrates (2 kg, twice daily); after 18 to 20h milk stasis (MS); and after 26 to 28h of feed withdrawal (FW).

The dual indicator dilution technique involved a single injection of a mixture of two indicators into the pudic artery, while continuously sampling the venous outflow from the gland for up to 2 min after the injection. The two indicators employed were: the non diffusible FITC-albumin (Sigma Chemical Co., St Louis, MO, USA), which remains in the circulation; and 14C-sucrose (Amersham Laboratories, Buckinghamshire, UK) which is freely diffusible across the capillary endothelium. Extraction (E) of the diffusible indicator, 14C-sucrose, was calculated from the difference in concentrations of the two indicators in the venous outflow from the gland up to 10 seconds after injection. Tissue weight was estimated from milk production as described by Linzell, 1972.

The capillary exchange capacity is described by the equation: PS = -F log e (1-E), and is a product of the permeability (P) and surface area (S) of the capillaries (Shepherd, 1981). Integration of the area under the FITC-albumin concentration-time curve enabled the determination of the time taken for half the intravascular indicator to reach the venous outflow, the mean transit time (t).

Despite the limited number of animals (n = 4), results showed a significant decrease in both F and PS due to milk stasis and feed withdrawal (Table 1). Extraction of the freely diffusible indicator tended to be lower than control with MS treatment (P=0.1), whilst it was unchanged following FW (P=0.72). The significant increase in t follow-

| TABLE 1: Effect of milk stasis and feed withdrawal on the mammary arterial flow (F), mean transit time of the intravascular indicator (t), extraction ratio (E) and the capillary exchange capacity – the capillary permeability – surface area product (PS). Each value represents the mean ± SEM of four animals. |
|---|-----------------|-----------------|-----------------|
| Mammary Arterial Flow (F) ml/min/100g tissue | Control | Milk Stasis | Feed Withdrawal |
| 40.40 ± 8.58a | 14.98 ± 2.07b | 12.00 ± 3.28b |
| Mean Transit time (t) (sec) | 12.08 ± 1.03a | 12.95 ± 1.08a | 22.25 ± 3.68b |
| Extraction (E) | 0.70 ± 0.04 | 0.48 ± 0.08 | 0.67 ± 0.07 |
| Permeability x Surface Area (PS) ml/min/100 g tissue | 47.91 ± 8.98a | 9.47 ± 1.42b | 12.18 ± 2.30b |

*a, b means within the same row with different superscripts differ significantly (p<.05)
ing FW is consistent with a lower capillary flow in the
gland and a similar number of capillaries being perfused.
Therefore, the decrease in PS would be due to a decrease
in the permeability of the capillaries, with S being at
least the same or greater than control during this physi-
ological state.

The lack of change in E could be explained by the
longer residence time within the capillaries allowing more
efficient extraction of the diffusible indicator even though
P was reduced. With MS, despite decreased arterial blood
flow, t was not different to that with C, suggesting that a
smaller number of capillaries were perfused, and hence the
decrease in PS with this treatment may be predicted to be
due to a fall in S. Since S is largely a reflection of the
number of capillaries available for perfusion, it might be
surmised that milk stasis results in closure of capillaries
within the mammary gland. Silver (1956), also found
evidence of capillary derecruitment during milk stasis,
suggesting that the mammary gland is capable of control-
ling the delivery of substrates to its secretory cells, prob-
ably by changes in the balance of locally produced

vassoactive compounds. In contrast, when nutrition is lim-
iting, the apparent decrease in capillary permeability may
be due to systemic control of the microvasculature, an
aspect which requires further investigation.

REFERENCES

of substrate supply for milk synthesis. Journal of Dairy Science
68:1041
Linzell, J.L. 1972. Milk yield, energy loss in milk and mammary gland
weight in different species. Dairy Science Abstracts 34(5): 351-360
Shepherd, A.P. 1981. Intestinal capillary exchange capacity and oxygen
uptake rate: Applications of the indicator dilution principles. In:
Measurement of blood flow: Applications to the splanchnic circu-
lation. Eds. D.N. Granger and G.B. Bulkley, Baltimore, Wilkins
and Wilkins, pp 293-317
Silver, I.A. 1956. Vascular changes in the mammary gland during
engorgement with milk. Journal of Physiology 133:65p
Stelwagen, K, Davis, S.R., Farr, V.C., Prosser, C.G. and Sherlock, R.A.
1994. Mammary tight junction integrity and mammary blood flow
during extended milking interval in goats. Journal of Dairy Sci-
ence 77:426-432.