New Zealand Society of Animal Production online archive

This paper is from the New Zealand Society for Animal Production online archive. NZSAP holds a regular annual conference in June or July each year for the presentation of technical and applied topics in animal production. NZSAP plays an important role as a forum fostering research in all areas of animal production including production systems, nutrition, meat science, animal welfare, wool science, animal breeding and genetics.

An invitation is extended to all those involved in the field of animal production to apply for membership of the New Zealand Society of Animal Production at our website www.nzsap.org.nz

The New Zealand Society of Animal Production in publishing the conference proceedings is engaged in disseminating information, not rendering professional advice or services. The views expressed herein do not necessarily represent the views of the New Zealand Society of Animal Production and the New Zealand Society of Animal Production expressly disclaims any form of liability with respect to anything done or omitted to be done in reliance upon the contents of these proceedings.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

You are free to:

Share — copy and redistribute the material in any medium or format

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

NoDerivatives — If you remix, transform, or build upon the material, you may not distribute the modified material.

http://creativecommons.org.nz/licences/licences-explained/
Farm factors that influence the eating qualities of lamb meat

A. R. BRAY

Winchmore Irrigation Research Station
Ministry of Agriculture and Fisheries, Ashburton

ABSTRACT

If predictions for future growth of New Zealand’s exports of chilled lamb meat are to be fulfilled, overall quality will have to be maintained at a consistently high level, and properties like storage life and appearance will require emphasis.

A review of scientific literature showed that a wide range of farm practices can influence meat quality. The trend to breed leaner lambs, to slaughter more ram lambs at heavier weights and older ages in winter and spring, and effects of stressful experiences before slaughter, were seen as areas of potential concern for the production of high quality meat.

However, it has not been established that these factors are of economic importance to the meat industry. It is suggested that they should be investigated as possible constraints on the future development of markets for premium quality lamb.

Keywords Lamb; meat quality; management.

INTRODUCTION

Statements by leaders in the New Zealand meat industry indicate that more attention will have to be paid to the quality of lamb exports as the proportion that is exported as frozen carcasses declines and that exported in further processed forms, particularly by chilled transport, increases.

Chilled lamb cuts are seen as a major area for market growth (Anonymous, 1985; Phillips, 1986). They require emphasis on different quality characteristics and more consistent and higher overall standards of quality than frozen carcasses, so it is appropriate to review our knowledge of factors influencing meat quality.

MEAT QUALITY

Meat quality is influenced by farm production practices, transport to slaughter, factors operating in slaughter and processing plants, transport to retail sites and at retail sites. In this review attention is confined to on-farm factors without implying that they are more important than off-farm factors.

The term meat quality covers many characteristics (Table 1) several of which are highly subjective. The assessment of each, and its contribution to overall meat quality is influenced by such things as the form that the meat is in, the use to which it is to be put, and the expectation of the consumer. Consumer tastes vary markedly between cultures, such as between Japan and the Middle East (Park and Thomas, 1973) and even within nations (Currie et al., 1986). Thus it is often not possible to say what effect a practice will have on meat acceptability. Nevertheless it can be safely assumed that chilled lamb cuts should have a long storage life, be lean, tender and juicy. Toughness due to cold-induced shortening of muscles (Locker, 1985) is still a significant issue for frozen lamb despite routine electrical stimulation (Chrystall and Devine, 1985) of carcasses immediately after slaughter. It is less of a problem for chilled lamb because higher storage temperatures mean that cold-shortening of muscles is less likely and meat becomes more tender during storage.

An objective measurement that is widely used as an indicator of the quality of meat is its ultimate pH (Newton and Gill, 1980-81; Tarrant, 1981). Apart from the tenderising influence of protein hydration, the effects of high pH on beef quality are deleterious (Table 2). Although the situation in lamb is less well known, the fact that high pH meat has a shorter storage life alone would render it less desirable for export in chilled forms.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Meat quality characteristics and possible farm influences.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb meat characteristics</td>
<td>Possible farm influences</td>
</tr>
<tr>
<td>Storage life</td>
<td>Hygiene, stress</td>
</tr>
<tr>
<td>Amount of lean marbling fat</td>
<td>Genotype, maturity, season</td>
</tr>
<tr>
<td>removable fat</td>
<td></td>
</tr>
<tr>
<td>bone</td>
<td></td>
</tr>
<tr>
<td>Colour of lean fat</td>
<td>Genotype, maturity, diet</td>
</tr>
<tr>
<td>Odour and flavour</td>
<td>Dic, stress</td>
</tr>
<tr>
<td>Tenderness</td>
<td>Stress, maturity</td>
</tr>
<tr>
<td>Juiciness</td>
<td>Stress, maturity</td>
</tr>
</tbody>
</table>
TABLE 2 Beef quality responses to increased ultimate pH; adapted from Purchas (1988).

<table>
<thead>
<tr>
<th>Changes associated with an increase in muscle pH</th>
<th>Accompanying quality responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>More rapid bacterial growth</td>
<td>Shorter storage life</td>
</tr>
<tr>
<td>Earlier protein breakdown</td>
<td>Shorter storage life</td>
</tr>
<tr>
<td>Increased protein hydration</td>
<td>More tender</td>
</tr>
<tr>
<td>Less lactic acid etc.</td>
<td>Less flavour</td>
</tr>
<tr>
<td>Less oxymyoglobin</td>
<td>Darker colour</td>
</tr>
</tbody>
</table>

FARM FACTORS

Genotype

Breeds. Differences between breeds and sires in meat palatability are seldom large and by no means consistent (Woodhams et al., 1966; Crouse, 1983) and may be due to associated factors such as amount of fat (Butler-Hogg et al., 1987). With respect to New Zealand breeds, Petersen (1984) noted that the pH of the m. longissimus dorsi of Perendale lambs was 0.25 units higher than other breed groups in a slaughter plant survey (Table 3). Moore and Duganzich (1985) also recorded higher pH values in Perendale cross rams but not wethers or ewes. Additionally Purchas et al. (1980) noted that Cheviots had higher corticosteroid hormone levels suggesting that sheep with Cheviot genes, such as Perendales, may be more likely to exhibit stress-induced effects. However, none of the above studies can be said to offer good evidence of a genetic effect.

The occurrence of yellow fat is of some concern to the meat industry and it (Kirton et al., 1975; Kruggel et al., 1982), like other fat characteristics (Ch'ang et al., 1980) is influenced by breeding.

Sex. Ram lambs fed on pasture and killed over the usual range of slaughter weights and ages for New Zealand lambs have generally been assessed as having similar flavour, juiciness and tenderness as induced cryptorchid, wether and ewe lambs (Kirton and Patterson, 1972; Corbett et al., 1982a). Those killed at heavier weights and older ages are often less palatable (Crouse 1983; Kirton et al., 1983; Field, 1984), a tendency that needs to be kept in mind in view of the trend to grow more ram lambs to heavy weights for chilled meat markets.

Data from 2 studies (Table 3) shows that ram meat can have a higher pH than wether or ewe meat. Also meat companies report that rams cause more hygiene problems during slaughter than other sex types due to the presence of the scrotum and dirtier fleeces from riding each other.

Maturity

Age. The darkness, toughness, strength of flavour and presence of off-flavours increase with age (Asghar and Pearson, 1980; Kirton et al., 1983) but over the age range (3 to 9 months) when most lambs are slaughtered in New Zealand, few differences have been detected (Woodhams et al., 1966; Fumival et al., 1977; Crouse, 1983). Even lambs that have been held over winter and slaughtered at around 12 months of age have not shown deleterious changes in meat quality (Butler-Hogg and Buxton, 1986; Butler-Hogg et al., 1985; Hagyard, 1984). By the end of winter lambs will be leaner than expected for their weight (Jagusch and Rattray, 1979; Kirton et al., 192b; Bray and Taylor 1987) and there has been industry reports of poor quality meat from very lean lambs in late winter and early spring. Older lambs may be more sensitive to stress effects (Monin and Gire, 1977, cited by Monin, 1981).

TABLE 3 Breed and sex effects on the ultimate pH of m. longissimus dorsi of lambs.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Ewe</th>
<th>Wether</th>
<th>Ram</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romney cross</td>
<td>5.57</td>
<td>5.58</td>
<td>5.70</td>
<td>Moore and Duganzich (1985)</td>
</tr>
<tr>
<td>Coopworth cross</td>
<td>5.57</td>
<td>5.63</td>
<td>5.80</td>
<td>(n = 9)</td>
</tr>
<tr>
<td>Perendale cross</td>
<td>5.57</td>
<td>5.58</td>
<td>6.02</td>
<td></td>
</tr>
<tr>
<td>Coopworth</td>
<td>5.66</td>
<td>5.74</td>
<td>6.12</td>
<td>A.R. Bray and B.B. Chrystall (unpublished) (n = 34)</td>
</tr>
<tr>
<td>Romney</td>
<td>5.57*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Romney cross</td>
<td>5.58</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed breed</td>
<td>5.56</td>
<td>(n = 240 - 744)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perendale</td>
<td>5.76</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Mixed sex
Size. Large carcasses cool slower after slaughter than small carcasses so their meat is less likely to be tough because muscles have cold shortened (Marsh et al., 1968; Wenham et al., 1973). Thus very lean lambs are more susceptible to toughness due to cold shortening and to freezer burn and may be less flavoursome.

On the other hand, because of larger amounts of fat in subcutaneous and intermuscular depots, untrimmed meat from large carcasses can be less attractive to consumers. Intramuscular (marbling) fat is desired by many but neither genetic nor farm management means of obtaining good levels of marbling fat at low levels of subcutaneous and intermuscular fat have been identified.

Diet

The composition of lamb diets influences the products of digestion and hence meat odour, flavour and fat characteristics. (Cramer, 1983; Field et al., 1983; Ford and Park, 1980). Off flavours have been noted on some but by no means all occasions in lambs fed brassicas (Park et al., 1972; Wheeler et al., 1974; Jagusch et al., 1977; Koch et al., 1987) legume forages (Cramer et al., 1967; Shorland et al., 1970; Park et al., 1975; Nicol and Jagusch, 1971; Nixon, 1981), cereal greenfeeds (Park et al., 1972) maize silage and weeds (Park and Thomas, 1973). Terms used to describe these off-flavours have included pungent, nauseating, sour and porky.

Kruggel et al. (1982) implicated diet in the occurrence of yellow fat in lambs with a reduced incidence from grain diets.

Health and Hygiene

Dirty lambs presented for slaughter represent a problem as contamination of meat is more likely. If not detected, storage life and eating quality can be reduced. In New Zealand slaughter plants many lambs have to be washed before slaughter to reduce contamination. Repeated washing can adversely affect meat quality (Petersen, 1983). The greater hygienic problem with ram lambs has already been noted.

Whole or part carcasses visibly affected by disease are rejected for human consumption but other less obvious disorders that influence digestive and metabolic processes may well affect production of flavour compounds. For instance, Kirton et al. (1976, 1979) reported that meat from lambs badly affected by facial eczema was less palatable.

Also to be considered is the perceived healthiness of the product in light of the world-wide trend away from consumption of fatty meats and growing markets for natural products without residues of unwanted chemicals. A recent survey (Chrystall and Winger, 1986) has shown that some consumer opinions are ill-founded and that New Zealand lamb products have a number of positive health attributes relative to alternative foods.

Stress

Stress before slaughter can affect meat quality by increasing muscle pH.

Underfeeding. Short-term starvation or prolonged underfeeding with limited weight loss has been found to have little influence on meat quality (George et al., 1966; Kirton et al., 1968; 1981; Jacobs et al., 1973; Shorthose, 1978; Riley et al., 1981; Devine et al., 1983; Warriss et al., 1987). However when underfeeding resulted in loss of up to 18% of carcass weight in 6 weeks, meat pH increased with weight loss. The increase was greater when weight loss was more rapid (Fig. 1). Lambs that lost 34% of carcass weight in 6 weeks had tougher meat than growing lambs though juiciness and flavour were not affected (Asghar and Yeates, 1979 a, b).

Shearing. Shearing had no effect on the meat pH of growing lambs (Sumner, 1984) but in lambs that lost weight shearing increased pH with the effect still present 6 weeks after shearing (Table 4). In the survey conducted by Petersen (1984) an inverse correlation existed between meat pH and wool weight.

Other stressors. Climate, exercise, prolonged transport and holding period before slaughter, washing before slaughter and administration of exogenous adrenal hormones have all been shown to increase meat pH or reduce meat quality (Bramblett

FIG. 1 Influence of carcass weight change over 2, 4 or 6 weeks on the ultimate pH of m. longissimus dorsi, relative to lambs that maintained weight (A.R. Bray and R.R. Chrystall, unpublished).
TABLE 4 Effect of shearing on ultimate pH of *m. longissimus dorsi* of lambs fed low pasture allowances (A.R. Bray, et al. unpublished).

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Shearing treatment</th>
<th>Duration of undernutrition (weeks)</th>
<th>Overall</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (n = 30)</td>
<td>Woolly</td>
<td>5.72, 5.72, 5.72, 5.70</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorn</td>
<td>5.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (n = 25)</td>
<td>Woolly</td>
<td>5.86</td>
<td>†</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shorn</td>
<td>5.95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The results of a recent experiment (A.R. Bray and A.E. Graafhuis, unpublished) showed that the response to a stressor was greater in lambs exposed to other stressors. This finding suggests that the responses to single stressors measured in experiments will likely underestimate their impact under commercial conditions where lambs can be exposed to multiple stressors.

CONCLUSION

It is apparent from experimental studies that a wide range of farm practices may influence the quality of lamb meat. However, their importance to the New Zealand meat industry is not known. It is necessary to correct this situation if the industry is to consistently supply meat of high quality and maintain the rapid growth of markets for premium products such as chilled cuts.

It is suggested that early attention should be focused on the impact, if any, on lamb meat quality of breeding for leanness, increasing number of ram lambs killed at heavier weights and older ages, often after supplementary feeding and stressful farm practices, particularly in light of the cumulative effect of stressors.

REFERENCES

Advances in meat research 1: 1-44.

Bray — LAMB QUALITY

