The use of a pastoral computer model — a learning experience

B.J. RIDLER, L.J. STACHURSKI
Agricultural and Horticultural Systems Management Department
Massey University, Palmerston North

I.M. BROOKES AND C.W. HOLMES
Animal Science Department
Massey University, Palmerston North

ABSTRACT
A linear programming model has been developed which allows investigation of alternative dairy production systems. Simulation models used in conjunction with the linear programming model were then used to help set performance standards for on farm animal productivity. Information from these model sources is seen as an aid to decision making on farms and as an opportunity for managers to better understand the basic relationships that apply within their farming system.

Keywords Linear program; simulation model; animal performance; decision making; feed budget.

INTRODUCTION
A simple feed budget, calculated and monitored during the winter of 1974, led to the development of an information gathering system at No. 4 Dairy Farm, Massey University (Ridler, 1982). Several simple computer programs were then developed in order to quickly process and analyse the data collected. Herbage masses were estimated using a rising plate (Earle and McGowan, 1979) and from these data, the computer programs calculated pasture cover and net pasture growth, which were used for feed planning on a monthly or yearly basis. Many short term problems, however, have longer term implications and a method of long term planning was required. A linear programming model (Miller, 1982) was therefore adapted for use as a management aid at No.4 Dairy (Ridler, 1981). This model provided an overview of the production system on an annual basis and allowed the effects of alternative strategies to be quickly evaluated, using the information collected from the farm. The original model has been further developed and extended so that it may now be used to investigate a wide range of options within various pastoral production systems.

USES OF MODEL
The linear programming model may be used to optimise the system with respect to one of a number of objectives, for example, milkfat production per annum or the net dollar difference between milkfat returns and the costs of supplementary feeding. The model then provides a framework which allows either the effects of alternative management strategies within a particular system to be investigated, or comparative analyses between alternative systems to be performed.

The model has been used to investigate:
1. The effect of changes in calving date and pattern.
2. The effects on production and pattern of feed availability resulting from increased replacement rates.
3. The effect on patterns of feed demand of a variety of lactation curves, levels of feeding, and rates of liveweight gain. The mean daily metabolisable energy requirements in each period are calculated as the sum of the requirements for maintenance, pregnancy, lactation, and liveweight change. The metabolisable energy available to meet these requirements is calculated from the supply of dry matter, its metabolisable energy concentration, and the limits imposed by voluntary feed intake. Feed dry matter may be transferred forward from one period to the next, with maximum pasture cover constraints limiting the process, before being made available to stock. Dry matter may also be harvested as silage or hay and fed out in subsequent periods.

BASIS OF MODEL
The model is based on a single year production cycle consisting of 26 fortnightly periods thus allowing management decisions to be made every 2 weeks.

Animal requirements in the model are based on published relationships (Agricultural Research Council, 1980). The model allows choices amongst a
running high breeding index cows v low breeding index cows.

4. The integration of bull beef with dairy production.

5. All-year round and out-of-season milk production systems.

6. The introduction of Matua prairie grass (*Bromus willdenowii* Kunth) in varying proportions into an all-dairy, a bull beef, and an integrated dairy-beef system.

It is suggested, however, that the implementation and evaluation phase of the decision making process (Fig. 1) is more important, as far as farmers are concerned, than exploring numerous options with a computer model.

FIG. 1 Diagramatic representation of the decision making process.

The linear programming model and the supporting simulation models for dairy cow production and young stock growth, allow a specific farm system to be modelled, using the farmer’s own predictions of performance for pasture production, stocking rate, animal production and pasture cover throughout the year. By using the simulation sub-models for animal production, a simple set of performance levels can be determined e.g. feed intakes, pasture covers, and animal production. Throughout the year, this acts as a standard reference base for the manager. If these performance levels are not achieved, the model can be interactively re-run to show what effect this will have on overall productivity for the year. This process gives an immediate re-evaluation of the performance and allows the manager to exert more control over management as:

- The difference between expected and actual performance levels is known and some knowledge of why the difference has occurred is also able to be analysed.
- The likely outcomes from the changed circumstances can be calculated and consideration given to the effects these will have on the objectives of the manager.

In this manner the manager’s confidence in being able to better control farm performance increases, as does the manager’s knowledge of the farming system.

The use of the model in this way requires only minimal information from the manager (pasture production, animal performance, and an ability by managers to assess levels of pasture cover); however, many farm information systems are not yet at this stage (Ridler and Hurley, 1984).

MODEL EVALUATION

Until a monitoring system is established the model is of little direct value in a management sense to the managers but is still useful to investigate the possible outcomes of various management alternatives. This process is likely to be of less benefit in increasing understanding and awareness of such systems than the interactive use of the model with a manager where the actual performance levels can be compared against both the manager’s and the model’s predictions.

ACKNOWLEDGEMENTS

Financial support from Massey University Agricultural Research Foundation.

REFERENCES

Ridler B.J. 1982. No. 4 Dairy farm — a review of the early years. *No. 4 Dairy farm publication Series*, No. 1. Massey University.